做好预测其实并不像听起来那么难。正确地运用成熟的预测技术能显著提高利润。具体来说,在规则指导下用统计学方法进行预测,并制定更为动态的企业全面规划,能够去除运营决策中的一些猜测因素,让预测的焦点重返优化盈利,而非等事情发生了再去"救火".据Gartner Group称,成功实施统一预测流程的企业至少可望获得10%的收入增长。
由于竞争对手和市场状况变化莫测,许多高层经理人对预测的准确性表示怀疑。但许多大型企业如通用电气和沃尔玛已经找到可靠的预测方法,并在整个企业范围加以运用。
首先要淘汰无效技术。有些企业使用非常复杂的模型,却没有适当地把企业的供应商和分销商网络考虑在内,从而使结果不可靠。
而在另一个极端,许多企业过分依赖销售人员和经理的意见来产生结果。证据显示,不管他们多么富有经验,这些人员的意见可能导致不确切的结果。因为他们往往:
混淆目标(希望)和预测(现实);以为自己的个人判断比统计预测更可靠;预测结论为本职能部门服务,不信任其他部门的预测;高估营销攻势以及其他收入管理行动的效果。
不要依赖于公司单个部门的预测结论。例如,财务、制造和销售等职能部门可能各自独立地产生预测结论,但没有一个部门监控其他部门预测中的变动因素,并修正自身的预测结论以反映这些变动。
有这些问题的企业必须解决若干技术事项,才能创建可靠的财务预测。所需要的数据通常分布在多个系统中,如财务、生产、销售和供应链。在大多数企业中,获取所有这些数据几乎是一件无法完成的任务。但如果信息技术的构造能整合这些不同的系统,员工提取数据就会相对容易些。
许多企业还需要进而解决流程问题,这就要实施系统的、跨部门的预测方法。还应考虑企业政治和信任问题。
有些企业已经开始采取措施改善其预测能力。制造和零售领域的许多企业认识到,疏忽大意的预测标准导致了高库存和低利润。
为解决这个困扰各方的问题,一些制造商和零售商联合开发了一套标准,用于整个供应链规划和预测。贸易伙伴运用"协作规划、预测和补货"(CPFR),就共同的经营目标和措施达成一致,携手制定销售和运作计划,并通过电子化协作更新销售预测和补货计划。参与各方还运用标准方法收集供应商和顾客的意见,并采用标准数据格式产生销售预测结论。
采用CPFR的企业包括伊斯曼柯达、货物零售商 JC Penney、金佰利-克拉克(Kimberly-Clark)、凯马特(Kmart)、那比斯科(Nabisco)和沃尔玛。根据制造业咨询公司 Industry Directions的调查,采用CPFR标准的企业,其预测准确率提高了约20%.例如,沃尔玛的"网上零售链"系统向公司5,000多家供应商中的 3,500家提供每周预测数据。这些数据让人观测到沃尔玛的零售活动,帮助供应商改进其预测,在正确的时机向零售商提供产品。然而,大多数企业对预测流程投资不力或者欠妥。