曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.
例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)
分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.
解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 ?x2+x1 y2+y1
y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )
又∵A,B是椭圆x2a2 + y2b2 = 1 上的点
∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a
例2 如图,已知△OFQ的面积为S,且OF?FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.
分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.
例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 ( )
A a<0 B a≤2 C 0≤a≤2 D 0<2< p>
分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.
解: 设Q( y024 ,y0) 由|PQ| ≥a
得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0
∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立
而 2+ y028 最小值为2 ∴a≤2 选( B )