(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(1)非负整数集(自然数集):全体非负整数的集合记作N,
(2)正整数集:非负整数集内排除0的集记作Nx或N+
(5)实数集:全体实数的集合记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括
(2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(A)
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:
(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G
证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)