解法二:隔板法。观察题干,符合隔板法使用要求。第一步,把10个玩具车分成3堆,需要隔2个板;第二步,10个玩具车共形成11个空(加上左右两边两个空),但不可以把板放在最边上的空里,也不可以把两个板放到一个空里,故需要在中间9个空中选2个放入板子,即:,(注:在此过程中,无需再考虑顺序)。因此,本题的答案为B选项。
【例2】有30个苹果,分给4个不同的小朋友,每个小朋友至少分得4个苹果,问有多少种不同的分配方案?
【解析】题干中,不符合隔板法第二个使用要求"每个对象至少一个",可进行转化:每个小朋友每人先给3个苹果,即可替换为:18个苹果分给4个小朋友,每个小朋友至少分1个苹果,有多少种分法?就是在17个空中插3个板 :。因此,本题答案为B选项。
【例3】某单位圣诞节准备了8份相同的礼物,打算分给4名员工中的一名或多名,请问有多少种不同的分法?
【解析】题干中,将8份相同的礼物分给4名员工,但是题干中并没要求每人至少分一份,因此可以构造"至少分一份",然后再使用隔板法。假设先向每人借一份,此时共有礼物8+4=12(份),这12份相同的礼物再分给4名员工时每人至少分一份(将借的一份还了),就是在11个空中插入3个板,共有 =165(种)分配方式。因此,本题选择C选项。
通过三个典型例题,大家不难发现,隔板法是一类技巧性很强的排列组合问题的解决方法。不管是针对简单的模型题目还是针对变型模型,大家只要记住隔板法的应用条件,若是不符合条件,将其转化之后再应用即可。