用户画像这件事情看似简单,但其实是因为拍脑袋猜测很简单,精确定义很难。所以以往我们对用户的定义通常是这样的:“25-30岁的白领”、“有阅读习惯的职场青年”、“1-3年经验的程序员”……但这其实并没有多大的意义。
用户在使用哪些产品,对产品的认知如何,使用频率是什么样的,消费水平如何分布等等,但其实这些可以通过对产品本身的用户数据进行分析,得出更加深刻的结论。
或者我们也可以通过公开数据集、或者爬虫来获取外部数据进行分析,这算是一个非常靠谱的行业调研了。通过数据分析的方法,我们可以快速去了解一些新的领域,了解新的市场,从而知道机会在哪,有效降低试错成本。
洞悉广告市场复杂的交易结构和自身产品、用户特点,并选择合理高效的营销方案和技术架构,是商业化必须面对的第一步。
产品里面有很多地方需要做转化分析:注册转化、购买转化、激活转化等等,一般我们借助漏斗来衡量用户的转化过程。从转化的漏斗我们大致可以得出一些结论,比如用户在哪些环节受到阻碍,是文案吸引力不够,还是功能体验太差。
精细化的分析,多做一些假设检验,能够为我们得出更加细化的解决方案。
用户行为分析逐渐成为各种优秀产品不可忽视的一环,今日头条的异军突起,网易云音乐的良好口碑,皆与之相关。
我们需要对用户的需求进行分析,例如用户感兴趣的内容、内容阅读和传播的比例等。如何对用户进行标签化,相思相划分,如何根据用户历史习惯来精准推荐商品、内容,这些渐渐成为促进用户活跃,提升用户粘性的关键。
无论是产品的迭代计划,还是促活的策略,如何界定产品的迭代方向。根据用户行为数据的分析,用户浏览点击的热力图定位,以及不同页面、功能的流量监控,渐进式、有针对性地推出改善用户体验的新功能。