1、模型:有水平转盘模型、圆锥筒、圆锥摆模型和火车转弯问题等。
2、临界问题:
(1)静摩擦力产生的临界情况:
在水平转台上做圆周运动的物体,若有静摩擦力参与,则当转台的转速变化时,静摩擦力也会随之变化,当$F_f$达到最大值$F_{f
m max}$时,对应有临界角速度。解决这类问题一定要牢记“静摩擦力大小有个范围,方向可以改变”这一特点。
(2)与弹簧或绳连接的物体的临界情况:
处理该类问题时关键是分析弹力的大小和方向的改变。特别是有摩擦力参与的问题更需要和静摩擦力的特点相结合。对于与弹簧连接的物体的圆周运动,当运动状态发生改变时,往往伴随着半径的改变,从而导致弹簧弹力发生变化。分析时需明确半径是否改变,什么情况下改变,弹簧是伸长还是缩短等。
3、解决圆周运动中临界问题的一般方法:
(3)求出向心力(合力或沿半径方向的合力)的临界值。
(4)用向心力公式求出运动学量(线速度、角速度、周期、半径等)的临界值。
4、水平转盘模型的规律:物体离中心越远,越容易被“甩出去”。
5、圆锥筒模型的规律:稳定状态下小球所处的位置越高,半径越大,角速度就越小,线速度就越大,而小球受到的支持力和向心力并不随位置的变化而变化。
二、水平面内圆周运动的相关例题
(多选)全国铁路大面积提速,给人们的生活带来便利。火车转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损,为解决火车高速转弯时外轨受损这一难题,以下措施可行的是____
解析:设火车轨道平面的倾角为*α*时,火车转弯时内、外轨均不受损,根据牛顿第二定律有$mganα=mfrac{v^2}{r}$,解得$v=sqrt{granα}$,所以,为解决火车高速转弯时外轨受损这一难题,可行的措施是适当增大倾角$α$(即适当增加内外轨的高度差)和适当增大弯道半径$r$。