现场试验为以特定方式加固的结构构件抵抗爆炸荷载的行为提供了有价值的见解。由于所进行试验的参数变化很大,无法明确确定用于结构元件设计或改造增强的特定材料的有效性的一般结论。应以这种方式进行研究,以标准化爆破载荷试验参数,从而产生可比较的结果并得出最佳结构保护的结论。标准化爆破试验的定义是为试验结果的比较和分析提供基础的关键。
下一个可能的进一步研究方向可能是在设计和改造过程中使用天然材料。有关于大麻有益特性的大量报道[77-84]。大麻纤维具有高拉伸强度,这是FRC的一个积极特性。大麻纤维在混凝土混合物中的应用存在一些问题,但通过适当的化学制备,它们可以在混凝土混合物的设计过程中用作纤维增强材料,也可以作为一种改造技术,通过预制改造板或直接在结构件表面喷涂大麻混凝土混合物。此外,还有其他可能的天然纤维材料,如向日葵[85-87]或玉米[88-91]。这些作物被广泛使用,播种后有大量秸秆残留物,可以以纤维的形式回收。此外,竹子是东南亚广泛使用的建筑材料之一,以其高强度性能而闻名。纤维也可以由竹子制成,并与混凝土混合加固[92-97]。可用于这两种方法的人造材料包括橡胶[98–102]和聚苯乙烯[103–107]颗粒。这些颗粒可以混合到混凝土中,用于改造面板生产。这些面板强度相对较低,但具有延展性,能够更好地分散冲击能量。如果需要,可以通过钢板或铝板对这些面板进行额外加固,使其成为复合砂面板。还研究了一种有趣的爆炸荷载缓解技术,即使用充水屏障[108-111]。这种方法不仅减轻了爆炸效应,而且还排除了由于水的蒸发而产生碎片和飞溅碎片的潜在危险的可能性。爆破荷载减轻和破碎化预防使这种方法更有前景。
对适当锚固类型和长度的进一步研究应消除目前片材分层和端部剪切断裂的问题,使FRP改造更加安全。
只有少数研究人员试图利用不同的加固方案来缓解爆炸。钢筋是每个结构元件的重要组成部分,通过创新的钢筋布置,可以在不使用新的且通常昂贵的加固材料的情况下获得更好的抗爆性。
本文中的研究得到了克罗地亚科学基金会(HRZZ)在UIP-2017-05-7041“公路桥柱的爆破承载力”项目下的部分支持,并感谢对这项研究的支持。
本文的补充数据可在线访问https://doi.org/10.17632/cmpv5fx4d8.1。
Smith K. Environmental hazards: assessing risk and reducing disaster. Routledge; 2013.
START.National consortium for the study of terrorism and responses to terrorism. Global terrorism database [Data file]; 2016.Retrieved from
Buchan PA, Chen JF. Blast resistance of FRP composites and polymer strengthened concrete and masonry structures–a state-of-the-art review. Compos B Eng 2007;38:509–22.
Agency FEM.Reference manual to mitigate potential terrorist attacks against buildings. FEMA-426;2003.
Structures to resist the effects of accidental explosions, technical manual TM 5- 1300.US Army, Navy and Air Force.Washington DC:US Government Printing Office;1990.
Lok TS, Xiao JR. Steel-fibre-reinforced concrete panels exposed to air blast loading. Proc Inst Civ Eng–Struct Build 1999; 134:319–31.
Mays GC, Hetherington JG, Rose TA. Response to blast loading of concrete wall panels with openings.J Struct Eng 1999;125:1448–50.
Hudson JL, Darwin D. Evaluation and repair of blast damaged reinforced concrete beams. University of Kansas Center for Research Inc.;2005.
Lan S, Lok T-S, Heng L. Composite structural panels subjected to explosive loading. Constr Build Mater 2005; 19:387–95.
Hoemann J, Salim H, Dinan RJ. Fiber reinforced polymer(FRP)panels for blast and fragmentation mitigation.DTIC Doc 2007.
Ngo T, Mendis P, Krauthammer T. Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading. J Struct Eng 2007;133:1582–90.
Ohtsu M, Uddin FAKM, Tong W, Murakami K. Dynamics of spall failure in fiber reinforced concrete due to blasting. Constr Build Mater 2007;21:511–8.
Ghani Razaqpur A, Tolba A, Contestabile E. Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates. Compos B Eng 2007;38:535–46.
Silva PF, Lu B. Improving the blast resistance capacity of RC slabs with innovative composite materials. Compos B Eng 2007;38:523–34.
Fujikura S, Bruneau M, Lopez-Garcia D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading. J Bridge Eng 2008;13:586–94.
Ohkubo K, Beppu M, Ohno T, Satoh K. Experimental study on the effectiveness of fiber sheet reinforcement on the explosive-resistant performance of concrete plates. Int J Impact Eng 2008;35:1702–8.
Schenker A, Anteby I, Gal E, Kivity Y, Nizri E, Sadot O, et al. Full-scale field tests of concrete slabs subjected to blast loads. Int J Impact Eng 2008;35:184–98.
Zhou XQ, Kuznetsov VA, Hao H, Waschl J. Numerical prediction of concrete slab response to blast loading. Int J Impact Eng 2008;35:1186–200.
Tan KH, Patoary MKH. Blast resistance of FRP-strengthened masonry walls. I: Approximate analysis and field explosion tests.J Compos Constr 2009;13:422–30.
Urgessa GS, Maji AK. Dynamic response of retrofitted masonry walls for blast loading.J Eng Mech 2009;136:858–64.
Wu C, Oehlers DJ, Rebentrost M, Leach J, Whittaker AS. Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs. Eng Struct 2009;31:2060–9.
Wu C, Nurwidayati R, Oehlers DJ. Fragmentation from spallation of RC slabs due to airblast loads. Int J Impact Eng 2009;36:1371–6.
Beppu M, Ohno T, Ohkubo K, Li B,Satoh K.Contact explosion resistance of con crete plates externally strengthened with FRP laminates.Int J Protective Struct 2010;1:257–70.
Williamson EB,Bayrak O,Williams GD,Davis CE,Marchand KA,McKay AE,et al. Blast-resistant highway bridges:design and detailing guidlines.Washington,D.C.: Transportational Research Board;2010.p.142.
Yusof MA,Norazman N,Ariffin A,Zain FM,Risby R,Ng C.Normal strength steel fiber reinforced concrete subjected to explosive loading.Int J Sustain Construct Eng Technol 2010;1:127–36.
Fujikura S,Bruneau M.Experimental investigation of seismically resistant bridge piers under blast loading.J Bridge Eng 2011;16:63–71.
Garfield TT,Richins WD,Larson TK,Pantelides CP,Blakeley JE.Performance of RC and FRC wall panels reinforced with mild steel and GFRP composites in blast events.Proc Eng 2011;10:3534–9.
Ha J-H,Yi N-H,Choi J-K,Kim J-HJ.Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading.Compos Struct 2011;93:2070–82.
Morales-Alonso G,Cendón DA,Gálvez F,Erice B,Sánchez-Gálvez V.Blast response analysis of reinforced concrete slabs:experimental procedure and numerical si mulation.J Appl Mech 2011;78:051010–51012.
Tanapornraweekit G,Haritos N,Mendis P.Behavior of FRP-RC slabs under mul tiple independent air blasts.J Perform Constr Facil 2011;25:433–40.
Wu C,Huang L,Oehlers DJ.Blast testing of aluminum foam–protected reinforced concrete slabs.J Perform Constr Facil 2011;25:464–74.
Wu K-C,Li B,Tsai K-C.The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns.J Constr Steel Res 2011;67:602–12.
Yamaguchi M,Murakami K,Takeda K,Mitsui Y.Blast resistance of double-layered reinforced concrete slabs composed of precast thin plates.J Adv Concr Technol 2011;9:177–91.
Yi N-H,Kim J-HJ,Han T-S,Cho Y-G,Lee JH.Blast-resistant characteristics of ultra high strength concrete and reactive powder concrete.Constr Build Mater 2012;28:694–707.
Foglar M,Kovar M.Conclusions from experimental testing of blast resistance of FRC and RC bridge decks.Int J Impact Eng 2013;59:18–28.
Fujikake K,Aemlaor P.Damage of reinforced concrete columns under demolition blasting.Eng Struct 2013;55:116–25.
Maji AK,Brown J,Lacidogna G,Carpinteri A.Analysis of a full-scale blast test and retrofit design.ICF11,Italy 2005 2013.
Roller C,Mayrhofer C,Riedel W,Thoma K.Residual load capacity of exposed and hardened concrete columns under explosion loads.Eng Struct 2013;55:66–72.
Tabatabaei ZS,Volz JS,Baird J,Gliha BP,Keener DI.Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading. Int J Impact Eng 2013;57:70–80.
Chen L,Fang Q,Fan J,Zhang Y,Hao H,Liu J.Responses of masonry infill walls retrofitted with CFRP,steel wire mesh and laminated bars to blast loadings.Adv Struct Eng 2014;17:817–36.
Mao L,Barnett S,Begg D,Schleyer G,Wight G.Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading.Int J Impact Eng 2014;64:91–100.
Siba F.Near-field explosion effects on reinforced concrete columns:an experi mental investigation[Master].Carleton University Ottawa;2014.
Orton SL,Chiarito VP,Minor JK,Coleman TG.Experimental testing of CFRP strengthened reinforced concrete slab elements loaded by close-in blast.J Struct Eng 2014;140:04013060.
Castedo R,Segarra P,Alañon A,Lopez LM,Santos AP,Sanchidrian JA.Air blast resistance of full-scale slabs with different compositions:numerical modeling and field validation.Int J Impact Eng 2015;86:145–56.
Foglar M,Hajek R,Kovar M,Štoller J.Blast performance of RC panels with waste steel fibers.Constr Build Mater 2015;94:536–46.
Li J,Wu C,Hao H.An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads.Mater Des 2015;82:64–76.
Li J,Wu C,Hao H.Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion.Eng Struct 2015;102:395–408.
Alengaram UJ,Mohottige NHW,Wu C,Jumaat MZ,Poh YS,Wang Z.Response of oil palm shell concrete slabs subjected to quasi-static and blast loads.Constr Build Mater 2016;116:391–402.
Alsayed SH,Elsanadedy HM,Al-Zaheri ZM,Al-Salloum YA,Abbas H.Blast re sponse of GFRP-strengthened infill masonry walls.Constr Build Mater 2016;115:438–51.
Codina R,Ambrosini D,de Borbón F.Alternatives to prevent the failure of RC members under close-in blast loadings.Eng Fail Anal 2016;60:96–106.
FouchéP,Bruneau M,Chiarito VP.Modified steel-jacketed columns for combined blast and seismic retrofit of existing bridge columns.J Bridge Eng 2016;21.
Li J,Wu C,Hao H,Su Y,Liu Z.Blast resistance of concrete slab reinforced with high performance fibre material.J Struct Integrity Maint 2016;1:51–9.
Li J,Wu C,Hao H,Wang Z,Su Y.Experimental investigation of ultra-high per formance concrete slabs under contact explosions.Int J Impact Eng 2016;93:62–75.
Oña M,Morales-Alonso G,Gálvez F,Sánchez-Gálvez V,Cendón D.Analysis of concrete targets with different kinds of reinforcements subjected to blast loading. Europ Phys J Special Top 2016;225:265–82.
Wang J,Ren H,Wu X,Cai C.Blast response of polymer-retrofitted masonry unit walls.Compos Part B:Eng 2016.
Xia Y,Wu C,Liu Z-X,Yuan Y.Protective effect of graded density aluminium foam on RC slab under blast loading–an experimental study.Constr Build Mater 2016;111:209–22.
Xu J,Wu C,Xiang H,Su Y,Li Z-X,Fang Q,et al.Behaviour of ultra high perfor mance fibre reinforced concrete columns subjected to blast loading.Eng Struct 2016;118:97–107.
Zhai C,Chen L,Xiang H,Fang Q.Experimental and numerical investigation into RC beams subjected to blast after exposure to fire.Int J Impact Eng 2016;97:29–45.
Zhang F,Wu C,Zhao X-L,Xiang H,Li Z-X,Fang Q,et al.Experimental study of CFDST columns infilled with UHPC under close-range blast loading.Int J Impact Eng 2016;93:184–95.
Foglar M,Hajek R,Fladr J,Pachman J,Stoller J.Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks.Constr Build Mater 2017;145:588–601.
Li J,Wu C,Hao H,Liu Z.Post-blast capacity of ultra-high performance concrete columns.Eng Struct 2017;134:289–302.
Luccioni B,Isla F,Codina R,Ambrosini D,Zerbino R,Giaccio G,et al.Effect of steel fibers on static and blast response of high strength concrete.Int J Impact Eng 2017;107:23–37.
Yuan S,Hao H,Zong Z,Li J.A study of RC bridge columns under contact explo sion.Int J Impact Eng 2017;109:378–90.
Wu C,Li J.Structural protective design with innovative concrete material and retrofitting technology.Proc Eng 2017;173:49–56.
Codina R,Ambrosini D,de Borbón F.New sacrificial cladding system for the re duction of blast damage in reinforced concrete structures.Int J Protective Struct 2017;8:221–36.
Li Z,Chen L,Fang Q,Chen W,Hao H,Zhang Y.Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions.Eng Struct 2017;152:901–19.
Li M,Zong Z,Liu L,Lou F.Experimental and numerical study on damage me chanism of CFDST bridge columns subjected to contact explosion.Eng Struct 2018;159:265–76.
Choi J-H,Choi S-J,Kim J-HJ,Hong K-N.Evaluation of blast resistance and failure behavior of prestressed concrete under blast loading.Constr Build Mater 2018;173:550–72.
Meng Q,Wu C,Su Y,Li J,Liu J,Pang J.A study of steel wire mesh reinforced high performance geopolymer concrete slabs under blast loading.J Clean Prod 2019;210:1150–63.
Hajek R,Fladr J,Pachman J,Stoller J,Foglar M.An experimental evaluation of the blast resistance of heterogeneous concrete-based composite bridge decks.Eng Struct 2019;179:204–10.
Mehta P,Aitcin P.Principles underlying production of high-performance concrete. Cem,Concr Agg 1990;12:70–8.
ACI concrete terminology An ACI standard.ACI CT–13.January 2013;American Concrete Institute Pubs;2013.
Richard P,Cheyrezy M.Composition of reactive powder concretes.Cem Concr Res 1995;25:1501–11.
Mays G.Blast effects on buildings:design of buildings to optimize resistance to blast loading.Thomas Telford 1995.
2 ITS.ISO 834-11:2014,Fire resistance tests—elements of building construction—Part 11:specific requirements for the assessment of fire protection to structural steel elements;2014.
Li Z,Chen L,Fang Q,Hao H,Zhang Y,Chen W,et al.Study of autoclaved aerated concrete masonry walls under vented gas explosions.Eng Struct 2017;141:444–60.
Li Z,Wang L,Wang X.Compressive and flexural properties of hemp fiber re inforced concrete.Fibers Polym 2004;5:187–97.
Elfordy S,Lucas F,Tancret F,Scudeller Y,Goudet L.Mechanical and thermal properties of lime and hemp concrete(“hempcrete”)manufactured by a projection process.Constr Build Mater 2008;22:2116–23.
de Bruijn PB,Jeppsson K-H,Sandin K,Nilsson C.Mechanical properties of lime–hemp concrete containing shives and fibres.Biosyst Eng 2009;103:474–9.
Nguyen TT,Picandet V,Carre P,Lecompte T,Amziane S,Baley C.Effect of com paction on mechanical and thermal properties of hemp concrete.Europ J Environ Civ Eng 2010;14:545–60.
Arnaud L,Gourlay E.Experimental study of parameters influencing mechanical properties of hemp concretes.Constr Build Mater 2012;28:50–6.
Awwad E,Mabsout M,Hamad B,Farran MT,Khatib H.Studies on fiber-reinforced concrete using industrial hemp fibers.Constr Build Mater 2012;35:710–7.
Pretot S,Collet F,Garnier C.Life cycle assessment of a hemp concrete wall:Impact of thickness and coating.Build Environ 2014;72:223–31.
Walker R,Pavia S,Mitchell R.Mechanical properties and durability of hemp-lime concretes.Constr Build Mater 2014;61:340–8.
Nozahic V,Amziane S,Torrent G,Saïdi K,De Baynast H.Design of green concrete made of plant-derived aggregates and a pumice–lime binder.Cem Concr Compos 2012;34:231–41.
Sisman CB,Gezer E.Sunflower seed waste as lightweight aggregate in concrete production.Int J Environ Waste Manage 2013;12:203–12.
Chabannes M,Nozahic V,Amziane S.Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders. Mater Struct 2015;48:1815–29.
Adesanya DA,Raheem AA.Development of corn cob ash blended cement.Constr Build Mater 2009;23:347–52.
Raheem AA,Oyebisi SO,Akintayo SO,Oyeniran MI.Effects of admixtures on the properties of Corn-Cob ash cement concrete.Leonardo Electron J Pract Technol 2010;16:13–20.
Pinto J,Cruz D,Paiva A,Pereira S,Tavares P,Fernandes L,et al.Characterization of corn cob as a possible raw building material.Constr Build Mater 2012;34:28–33.
Pinto J,Vieira B,Pereira H,Jacinto C,Vilela P,Paiva A,et al.Corn cob lightweight concrete for non-structural applications.Constr Build Mater 2012;34:346–51.
Ghavami K.Ultimate load behaviour of bamboo-reinforced lightweight concrete beams.Cem Concr Compos 1995;17:281–8.
Terai M,Minami K.Fracture behavior and mechanical properties of bamboo re inforced concrete members.Proc Eng 2011;10:2967–72.
Zhang C,Huang Z,Chen GW.Experimental research on bamboo fiber reinforced concrete.Appl Mech Mater:Trans Tech Publ 2013:1045–8.
Agarwal A,Nanda B,Maity D.Experimental investigation on chemically treated bamboo reinforced concrete beams and columns.Constr Build Mater 2014;71:610–7.
Dewi SM,Wijaya MN.The use of bamboo fiber in reinforced concrete beam to reduce crack.AIP conference proceedings.AIP Publishing;2017.p.020003.
Karthik S,Rao PRM,Awoyera PO.Strength properties of bamboo and steel re inforced concrete containing manufactured sand and mineral admixtures.J King Saud Univ–Eng Sci 2017;29:400–6.
Antil Y,Verma V,Singh B.Rubberized concrete with crumb rubber.Int J Sci Res (IJSR)2014;3:1481–3.
Eiras JN,Segovia F,Borrachero MV,MonzóJ,Bonilla M,PayáJ.Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires.Mater Des 2014;59:550–7.
Gesoğlu M,Güneyisi E,Khoshnaw G,İpek S.Investigating properties of pervious concretes containing waste tire rubbers.Constr Build Mater 2014;63:206–13.
Gisbert AN,Borrell JG,García FP,Sanchis EJ,Amorós JC,Alcaraz JS,et al. Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene Methylene crumb rubber mortar.Constr Build Mater 2014;50:671–82.
Guo YC,Zhang JH,Chen G,Chen GM,Xie ZH.Fracture behaviors of a new steel fiber reinforced recycled aggregate concrete with crumb rubber.Constr Build Mater 2014;53:32–9.
Parton GM,Shendy-El-Barbary ME.Polystyrene-bead concrete properties and mix design.Int J Cem Compos Lightweight Concrete 1982;4:153–61.
Sri Ravindrarajah R,Tuck AJ.Properties of hardened concrete containing treated expanded polystyrene beads.Cem Concr Compos 1994;16:273–7.
Babu KG,Babu DS.Behaviour of lightweight expanded polystyrene concrete containing silica fume.Cem Concr Res 2003;33:755–62.
Xu Y,Jiang L,Xu J,Li Y.Mechanical properties of expanded polystyrene light-weight aggregate concrete and brick.Constr Build Mater 2012;27:32–8.
Liu N,Chen B.Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete.Constr Build Mater 2014;68:227–32.
Zhang L,Chen L,Fang Q,Zhang Y-D.Mitigation of blast loadings on structures by an anti-blast plastic water wall.J Central South Univ 2016;23:461–9.
Chen L,Fang Q,Zhang L,Zhang Y,Chen W.Numerical investigation of a water barrier against blast loadings.Eng Struct 2016;111:199–216.
Chen L,Zhang L,Fang Q,Mao Y-M.Performance based investigation on the construction of anti-blast water wall.Int J Impact Eng 2015;81:17–33.
Venkataramana K,Singh RK,Deb A,Bhasin V,Vaze KK,Kushwaha HS.Blast protection of infrastructure with fluid filled cellular polymer foam.Proc Eng 2017;173:547–54.