下面我们通过一道例题来实际应用一下刚才所学的知识点吧!
【例题】某次田径运动会中,选手参加各单项比赛计入所在团体总分的规则为:一等奖得9分,二等奖得5分,三等奖得2分。甲队共有10位选手参赛,均获奖。现知甲队最后总分为61分,问该队最多有几位选手获得一等奖?
这道题选C选项,小伙伴们,选对了么?没选对的小伙伴,我们一起来看看如何解这道不定方程组题吧!
拿到题,先根据题干信息以及问题,来判定一下题型,本题可以确定为基础应用题。
判定完题型,我们来仔细阅读题干,可以发现两个等量关系:①获得一等奖,二等奖,三等奖的总人数为总人数10人;②获得一等奖,二等奖,三等奖的总分数为甲队总分61分。根据这两个等量关系我们可以列出两个等式,然而我们发现题中没有给出获得一等奖,二等奖,三等奖的人数,且获得一等奖的人数为我们要求的答案。我们可以设获得一等奖的人数为x人,获得二等奖的人数为y人,获得三等奖的人数为z人。那么,我们就可以得到一个方程组。很明显两个方程三个未知数,未知数个数大于方程个数,这是一个不定方程组。下面我们根据刚刚讲述的解题步骤来做:第一步,加减消元保留x得到不定方程7x+3y=41;第二步,本题是求的一个未知数,那么可以利用代入排除法解题,题中问的是最多,那么从四个选项中最大的开始代入。代入D选项,得,解出为负值且不是整数,所以D选项不符合题意,排除。代入C选项,得,C选项符合题意,因此选择C选项。
小伙伴们是不是很简单,下次遇见它记得这两步方法哦!