【2019辽宁】某班在筹备联欢会时发现很多同学都会唱歌和乐器演奏,但有部分同学这2种才艺都不会。具体有4种情况:只会唱歌,只会乐器演奏,唱歌和乐器演奏都会,唱歌和乐器演奏都不会。现知会唱歌的有22人,会乐器演奏的有15人,两种都会的人数是两种都不会的5倍。这个班至多有()人。
【思路解析】设该班共有x人,唱歌和乐器演奏都不会的有y人,则两种都会的有5y人,根据二集合容斥公式可得:x-y=22+15-5y,化简得:x=37-4y。要使x最大,则y应最小,当y=1时,x=33,故这个班至多有33人。因此,选择C选项。
【2019甘肃】某单位工会会员60人,现在组织会员报名参加兴趣活动小组,其中报名徒步组的有40人,羽毛球组的有38人,乒乓球组的有31人,这三项活动都报名的有18人,问这个单位工会会员中最多有多少人三个小组都没有报名?
【思路解析】设报名两项的人数为x,三项都未报名参赛的人数为y,根据三集合非标准型公式可得:40+38+31-x-2脳18=60-y,化简得y=x-13。要让三项都未报名的y最多,则让x尽量多。考虑让报名两项的人数x尽量多,则除了报名三项之外的人,剩余尽量报名两项,此时x最多为(40+38+31-3脳18)梅2=27.5(人),向下取整为27人,即x最多为27,故y最多为x-13=27-13=14(人)。因此,选择A选项。