第一步 , 判断 题目 类型 。 题干 首句即表明本题为工程类题目,后面的描述均只含 不同情况下完成该工程的 天数,因此为"给定时间型"工程问题。
第二步 , 按 相应 步骤解题 。 ( 1 ) 赋总量 :赋 为甲、乙单独完成时 各自需要 天数 8 0 、 5 0 的最小公倍数 4 00 ; ( 2 ) 算效率 :甲的效率为 4 00 梅 50 = 8 ,乙的效率为 4 00 梅 80 = 5 ,丙的效率为 [4 00 - (8+ 5 ) 脳 2 0 ] 梅 1 2 - 5 = ; ( 3 ) 去求解 :丙单独完成需要的时间为: 4 00 梅 = 60 。因此选择 D 选项
【 效率制约型 】 题目中不仅给定工作时间,还给出与效率相关的某个逻辑关系 。
【 解题 步骤】 ( 1 ) 赋 效率:给定的逻辑关系 ; ( 2 )算总量 ; ( 3 ) 去求解。
【例 2 】 某医疗器械公司为完成一批口罩订单生产任务,先期投产了 A 和 B 两条生产线, A 和 B 的工作效率之比是 2 ∶ 3 ,计划 8 天可完成订单生产任务。两天后公司又投产了生产线 C , A 和 C 的工作效率之比为 2 ∶ 1 。问该批口罩订单任务将提前几天完成 ?