数据工具产品主要在数据的角度通过工具产品来为公司赋能,为业务提供数据工具平台,提升获取数据的效率和决策速度,通过数据驱动公司精细化运营,主要包含数据分析平台、用户行为分析平台、用户画像工具等工具产品。
让我们先看一下数据分析平台的建设,在这个竞争白热化的大数据时代,每个公司对数据的重视程度都提高到了前所未有的程度,无论是考虑数据的安全性,还是数据的使用效率,拥有为企业自己量身定制的数据分析平台,是实现精细化运营、数据驱动业务增长的利器。因此,掌握大数据分析平台的思路和方法,是数据产品经理必备的一项能力。
如图3所示,为数据分析平台的产品架构图,数据分析平台一般包括可视化分析模块、数据查询模块、权限及资源管理模块等。其中,数据分析模块还包括可视化模块、自助式分析模块、分析工具、智能分析等模块。
提起数据分析平台,很多人还停留在后端接口查询数据库数据、前端页面展现数据这种传统的定制化报表分析平台上。确实,公司在业务规模不大和人力不足的情况下,可以实现这种原始的报表分析平台,更准确地说应该是指标展现页面。
可是,这种方式太定制化了,没有任何的可拓展性,如果增加一个指标,前端和后端代码修改的成本都比较高。可以毫不夸张地说,前者就像还停留在冷兵器时代的军队,只能招兵买马、堆积人力,辛苦和艰难程度可想而知。
然而,随着业务的增长,报表的需求越来越多,天天深受写业务报表之苦的程序员和数据产品经理决定研制一个更先进的工具,来摆脱这种拼体力的工作。
为了提高数据分析平台的可扩展性,终于找到了QueryAdapter的方式解决问题,具体的方式就是通过前端配置 JSON数据,在API层下添加QueryAdapter层把API的接口翻译成相应的SQL,然后通过SQL查询具体的数据库,进一步提高前端的扩展性和报表的灵活性。
上面的这一过程可以用如图4所示的架构实现,就这样,“冷兵器”时代的大数据团队终于有了自己的“大炮”,他们只需更换“子弹”就可以快速解决不同的业务问题。于是,数据分析平台迭代到了V1版本——可拓展的报表分析平台。
人类科技的进步从来都不会止步不前,拥有了“大炮”和“步枪”,能不能再造出“飞机”与“坦克”,进一步提高“作战”效率?
虽然 V1版本解放了研发的生产力,但是随着业务人员的需求的多样性不断增加,数据分析师和产品经理的业务需求应接不暇,而且还有很大的沟通成本。面对上面的痛点,就需要为业务人员实现一个他们自己能够快速、方便搭建报表的平台。
于是,就需要为业务人员提供创建数据源、创建单图以及创建看板功能,让他们自己去创建报表自助分析,也就是所谓的自助分析三步曲,如图5所示,实现了这些功能,也就完成了数据分析平台V2版本——自助式分析平台。
一个完善的大数据分析平台,不仅仅是单纯展现数据的,更不是一些业务常用报表的罗列,还要能够为数据分析师、业务人员提供更多对数据的洞察,让数据更加智能化。
例如:可以支持维度下钻数据、单图之间数据联动、对数据异常点进行标注、指标异常检测等功能,可以让使用人员方便、快捷地分析更精细的业务场景,实现从更多维度去了解业务,让数据发挥更立体的价值。实现一个智能的数据分析平台,是大数据分析平台V3版本的迭代目标。
大数据分析平台要更方便地服务于不同的业务场景进行数据分析,整理数据报告是数据分析师必不可少的工作,无论是周报、月报,还是新版本表现的分析报告,都需要在围绕报告目标的基础上,对数据整理、分析并提炼要点,最后形成一份有指导意义、易读且美观的数据报告。
而这些报告,就是每个业务场景都会沉淀下来的一套固定的分析思路和分析架构,这套固定的分析架构可以放在平台上实现,例如可以实现业务大脑、渠道分析、用户留存分析、用户活跃分析及日常的周月报等。
通过更贴近业务场景的数据分析平台,我们可以方便、智能地查看分析数据,提高效率,通过数据驱动业务高效发展,完成了这个阶段,便实现了大数据分析平台V4版本——业务场景分析平台。
总结一下,如果一个公司要自己研发数据分析平台,一般会经过可拓展的报表分析平台,自助式分析平台,智能化分析平台,业务场景分析平台等四个大版本的迭代,演进路线可以用下图6表示。