物理化学是在物理和化学两大学科基础上发展起来的。它以丰富的化学现象和体系为对象,大量采纳物理学的理论成就与实验技术,探索、归纳和研究化学的基本规律和理论,构成化学科学的理论基础。物理化学的水平在相当大程度上反映了化学发展的深度。
随着科学的迅速发展和各门学科之间的相互渗透,物理化学与物理学、无机化学、有机化学之间存在着越来越多的互相重叠的新领域,从而不断地派生出许多新的分支学科,如物理有机化学、生物物理化学、化学物理学等。物理化学还与许多非化学的学科有着密切的联系,如冶金过程物理化学、海洋物理化学。一般公认的物理化学的研究内容大致可以概括为三个方面:1.化学体系的宏观平衡性质 以热力学的三个基本定律为基础,研究宏观化学体系(含有分子数目量级在10左右的体系)在气态、液态、固态、溶解态以及高分散状态的平衡态物理化学性质及其规律性。由于以平衡态为前提,时间不再是变量。属于这方面的物理化学分支学科有化学热力学、化学统计力学、溶液化学、胶体化学和表面化学。
2.化学体系的微观结构和性质 以量子力学为理论基础,研究分子、分子簇和晶体的结构,物体的体相中原子和分子的空间结构、表面相的结构,以及结构与物性之间的关系与规律性。属于这方面的物理化学分支学科有结构化学、晶体化学和量子化学。
3.化学体系的动态性质 研究由于化学或物理因素的扰动而引起的体系的化学变化过程速率和变化机理。此时,时间是与过程密切相关的重要变量之一。属于这方面的物理化学分支学科有化学动力学、化学动态学、催化科学与技术、光化学、电化学、磁化学、声化学、力化学(以摩擦化学为代表)等。
在理论研究方面,快速大型电子计算机和数值方法的广泛应用,扩展了量子化学在定量计算方面的能力。研究对象不仅涉及大分子,还可用以模拟复杂体系的动态过程。福井谦一提出的前线轨道理论以及R.B.伍德沃德和R.霍夫曼提出的分子轨道对称守恒原理,是量子化学应用于具体化学体系时的重要理论成果。但是仍然没有达到人们所期望的利用量子化学为基础解决和认识所有化学问题的水平。量子力学基本原理和化学实验的紧密结合将有助于解决这个问题。为此,发展能够应用于复杂分子体系的量子化学计算方法是实现上述目标的前提之一。因而W.科恩以电子密度泛函理论和J.波普尔以量子化学计算方法及模型化学等研究成果获得了1998年的诺贝尔化学奖。