sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
1、sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
sin(α+β)+sin(α-β)=2sin αcos β,
sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
2、根据欧拉公式,e ^Ix=cosx+isinx
得e^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
所以cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa