说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2、共150分,考试时间120分钟。
一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若a>b,则下列不等式(1)a+c>b+c;(2)a-c>b-c;(3)ac>bc;(4)>(c>0)其中恒成立的不等式个数为()
3.到两点A(-3,0)、B(3,0)距离之差的绝对值等于6的点的轨迹是()
7.离心率为,一个焦点是(5,0)的双曲线的标准方程是()
8.[原题资料有误]已知两点M(1,??),N(?,?),则M关于N的对称点的坐标是()
??(A)(1,?)(B)(1,?)??(C)(1,3)???????(D)(?,?3)
10.以点A(1,3),B(-2,8),C(7,5)为顶点的ABC是
11.已知椭圆上有一点P,它到椭圆左准线的距离是,点P到右焦点的距离是它到左焦点距离的几倍()
(A)7(B)6???????????????(C)5(D)
12.、方程表示的曲线是()
二、填空题(本大题共4小题,每小题4分,共16分。把答案填在题中横线上)
14.过点C(-1,1)和D(1,3),圆心在X轴上的圆的方程为。
15.已知F1、F2是椭圆+y2=1的两个焦点,P是该椭圆上的一个动点,则|PF1|·|PF2|的最大值是.
16如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面升高1米后,拱桥内水面宽度是。
三、解答题(本大题共6小题,共74分,解答题应写出文字说明、证明过程或演算步骤)
18.(本题满分12分)
在平面直角坐标系xOy中,△ABC的顶点B,C的坐标分别为(3,0),(3,0),若△ABC的周长为16,则顶点A的轨迹方程
19.(本题满分12分)
(1)求过点A(1,-4),且与直线平行的直线方程
(2)求过点A(1,-4),且与直线垂直的直线方程
21.(本题满分12分)
(2)直线与双曲线C相交于A、B两点,求|AB|的弦长。.
22.(本题满分14分)如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).
(II)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数。
13.12;14.(x-2)2+y2=1015.416
21.解:(1)由已知得
(2)由3x2-y2+1
22解:(I)当y=时,x=,又抛物线y2=2px
(II)设直线PA的斜率为kPA,直线PB的斜率为kPB.
故kPA=(x1≠x0)同理可得kPB=(x2≠x0)由PA,PB
设直线AB的斜率为kAB.由=2px2,=2px1相减得(y2-y1)(y2+y1)=2p(x2-x1),
所以kAB=(x1≠x2)将y1+y2=-2y0(y0>0)代入得kAB=