1.注重知识的拓展。在教学圆柱的认识时,通过把一张长方形的硬纸贴在木棒上,快速转动木棒,让学生观察转动起来后的形状是一个圆柱形。对于这个形状学生很容易想到,但是对于这个内容背后的知识更加需要学生掌握。在教学中我没有把知识点止于这一步,而是利用教具让学生清楚的观察到:当以长方形的长为轴旋转,长就是圆柱的高,宽就是圆柱的底面半径;当以长方形的宽为轴旋转,宽就是圆柱的底面半径,即以长方形的哪条边为轴旋转,哪条边就是圆柱的高,而另一条边就是圆柱的底面半径。通过这样的教学,学生在解决相应的问题时就不会感到无从下手,同时也培养了学生的空间想象能力。
2. 加强学生的动手操作,注重圆柱知识的推导过程。在教学圆柱的侧面积时,通过学生的动手操作,让学生对圆柱的侧面展开图是长方形有了一个清晰的认识,特别是圆柱的侧面积公式的推导过程,学生发现了长方形的长=圆柱的底面周长,宽=圆柱的高。因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。
3.注重数学思想方法的渗透。在教学圆柱的体积时通过教具的现场演示,学生清晰地看到了圆柱转化成长方体的过程,学生很容易发现:长方体的体积等于圆柱的体积,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,由此推导出圆柱的体积公式也是底面积乘高,并进一步推导V=∏r2h。在这一过程中,学生发现虽然形状发生了改变,但是体积不变,这也是数学教学中需要学生掌握的数学思想方法,除此之外,转化思想也是必不可少,这两种数学思想方法在解决问题过程中有着至关重要的作用,这对于以后的学习,对于学生的终身学习有着不可估量的作用。徐云鸿主任说:几何直观于学生而言,是一种有效的学习方式;于教师而言,是一种有效的教学手段。它是数形结合思想的体现,在小学数学教学中是不可缺少的、重要的数学思想方法。虽然徐老师说的是几何直观,但是对于其它在小学阶段中必须渗透的变中不变思想、转化思想也是是不可缺少的、重要的数学思想方法。