1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、自学指导
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
三、 问题导学
(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.
(3).概括形成邻补角、对顶角概念.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?