Overall, the etiology of glaucoma is constantly being updated, with more and more studies confirming that immune-mediated neurodegeneration plays a crucial role. The development of RGC mortality and retinal degeneration in glaucoma patients is the result of interactions and changes in multiple immunological variables, leading to immune homeostasis imbalance. These changes include immune cell activation, autoantibody formation, complement system activation, and microglial activation. Understanding these changes in immune components can aid in the identification of new glaucoma treatment targets. When appropriate, targeted blockage or promotion of the expression of certain immune components is used to maintain immune privilege in the degenerating retina, such as when researching new glaucoma medicines, eye drops, or intravitreal injections of immune component inhibitors or enhancers. Currently, glaucoma is mostly treated clinically with medicines or glaucoma surgery to reduce IOP. However, there are no conclusive clinical findings indicating immunomodulation is beneficial for glaucoma patients. Consequently, there is still a need to expand the sample size of clinical studies in glaucoma and to determine the specificity of altered immune components and identify biomarkers of glaucoma, which would provide a more comprehensive understanding of the mechanisms of the immune response in glaucoma and better treatment options for glaucoma and reduce or prevent the adverse effects of glaucoma.
[1] STEIN J D, KHAWAJA A P, WEIZER J S. Glaucoma in adults—screening, diagnosis, and management: a review[J]. JAMA, 2021, 325(2): 164. DOI:10.1001/jama.2020.21899.
[2] JONAS J B, AUNG T, BOURNE R R, et al. Glaucoma[J]. The Lancet, 2017, 390(10108): 2183–2193. DOI:10.1016/S0140-6736(17)31469-1.
[3] DANFORD I D, VERKUIL L D, CHOI D J, et al. Characterizing the “poagome”: a bioinformatics-driven approach to primary open-angle glaucoma[J]. Progress in Retinal and Eye Research, 2017, 58: 89–114. DOI:10.1016/j.preteyeres.2017.02.001.
[4] CHEN M, LUO C, ZHAO J, et al. Immune regulation in the aging retina[J]. Progress in Retinal and Eye Research, 2019, 69: 159–172. DOI:10.1016/j.preteyeres.2018.10.003.
[5] BELL K, UND HOHENSTEIN-BLAUL N von T, TEISTER J, et al. Modulation of the immune system for the treatment of glaucoma[J]. Current Neuropharmacology, 2018, 16(7): 942–958. DOI:10.2174/1570159X15666170720094529.
[6] KUNKL M, FRASCOLLA S, AMORMINO C, et al. T helper cells: the modulators of inflammation in multiple sclerosis[J]. Cells, 2020, 9(2): E482. DOI:10.3390/cells9020482.
[7] LINDESTAM ARLEHAMN C S, GARRETTI F, SULZER D, et al. Roles for the adaptive immune system in parkinson’s and alzheimer’s diseases[J]. Current Opinion in Immunology, 2019, 59: 115–120. DOI:10.1016/j.coi.2019.07.004.
[8] GRAMLICH O W, DING Q J, ZHU W, et al. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients[J]. Acta Neuropathologica Communications, 2015, 3: 56. DOI:10.1186/s40478-015-0234-y.
[9] CHEN H, CHO K-S, VU T H K, et al. Commensal microflora-induced t cell responses mediate progressive neurodegeneration in glaucoma[J]. Nature Communications, 2018, 9(1): 3209. DOI:10.1038/s41467-018-05681-9.
[10] GRAMLICH O W, GODWIN C R, HEUSS N D, et al. T and b lymphocyte deficiency in rag1-/- mice reduces retinal ganglion cell loss in experimental glaucoma[J]. Investigative Ophthalmology & Visual Science, 2020, 61(14): 18. DOI:10.1167/iovs.61.14.18.
[11] YANG X, ZENG Q, GÖKTAS E, et al. T-lymphocyte subset distribution and activity in patients with glaucoma[J]. Investigative Ophthalmology & Visual Science, 2019, 60(4): 877–888. DOI:10.1167/iovs.18-26129.
[12] BELL K, HOLZ A, LUDWIG K, et al. Elevated regulatory t cell levels in glaucoma patients in comparison to healthy controls[J]. Current Eye Research, 2017, 42(4): 562–567. DOI:10.1080/02713683.2016.1205629.
[13] WONG M, HUANG P, LI W, et al. T-helper1/t-helper2 cytokine imbalance in the iris of patients with glaucoma[J]. PloS One, 2015, 10(3): e0122184. DOI:10.1371/journal.pone.0122184.
[14] YU L, CHEN Y, XU X, et al. Alterations in peripheral b cell subsets correlate with the disease severity of human glaucoma[J]. Journal of Inflammation Research, 2021, 14: 4827–4838. DOI:10.2147/JIR.S329084.
[15] GRAMLICH O W, BECK S, VON THUN UND HOHENSTEIN-BLAUL N, et al. Enhanced insight into the autoimmune component of glaucoma: igg autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina[J]. PloS One, 2013, 8(2): e57557. DOI:10.1371/journal.pone.0057557.
[16] SCHWARTZ M. Physiological approaches to neuroprotection: boosting of protective autoimmunity[J]. Survey of Ophthalmology, 2001, 45: S256–S260. DOI:10.1016/S0039-6257(01)00208-9.
[17] SHOENFELD Y, TOUBI E. Protective autoantibodies: role in homeostasis, clinical importance, and therapeutic potential[J]. Arthritis & Rheumatism, 2005, 52(9): 2599–2606. DOI:10.1002/art.21252.
[18] JOACHIM S C, PFEIFFER N, GRUS F H. Autoantibodies in patients with glaucoma: a comparison of igg serum antibodies against retinal, optic nerve, and optic nerve head antigens[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie, 2005, 243(8): 817–823. DOI:10.1007/s00417-004-1094-5.
[19] JOACHIM S C, GRUS F H, PFEIFFER N. Analysis of autoantibody repertoires in sera of patients with glaucoma[J]. European Journal of Ophthalmology, 2003, 13(9–10): 752–758. DOI:10.1177/1120672103013009-1003.
[20] GRUS F H, JOACHIM S C, HOFFMANN E M, et al. Complex autoantibody repertoires in patients with glaucoma[J]. Molecular Vision, 2004, 10: 132–137.
[21] BOEHM N, WOLTERS D, THIEL U, et al. New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study[J]. Brain, Behavior, and Immunity, 2012, 26(1): 96–102. DOI:10.1016/j.bbi.2011.07.241.
[22] TEZEL G, THORNTON I L, TONG M G, et al. Immunoproteomic analysis of potential serum biomarker candidates in human glaucoma[J]. Investigative Opthalmology & Visual Science, 2012, 53(13): 8222. DOI:10.1167/iovs.12-10076.
[23] GRUS F H, JOACHIM S C, BRUNS K, et al. Serum autoantibodies to alpha-fodrin are present in glaucoma patients from germany and the united states[J]. Investigative Ophthalmology & Visual Science, 2006, 47(3): 968–976. DOI:10.1167/iovs.05-0685.
[24] JOACHIM S C, REICHELT J, BERNEISER S, et al. Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie, 2008, 246(4): 573–580. DOI:10.1007/s00417-007-0737-8.
[25] JOACHIM S C, BRUNS K, LACKNER K J, et al. Antibodies to alpha b-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and igg antibody patterns against retinal antigen in aqueous humor[J]. Current Eye Research, 2007, 32(6): 501–509. DOI:10.1080/02713680701375183.
[26] BELL K, WILDING C, FUNKE S, et al. Protective effect of 14-3-3 antibodies on stressed neuroretinal cells via the mitochondrial apoptosis pathway[J]. BMC Ophthalmology, 2015, 15: 64. DOI:10.1186/s12886-015-0044-9.
[27] BEUTGEN V M, PERUMAL N, PFEIFFER N, et al. Autoantibody biomarker discovery in primary open angle glaucoma using serological proteome analysis (serpa)[J]. Frontiers in Immunology, 2019, 10: 381. DOI:10.3389/fimmu.2019.00381.
[28] BEUTGEN V M, SCHMELTER C, PFEIFFER N, et al. Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire[J]. Clinical & Translational Immunology, 2020, 9(3): e01101. DOI:10.1002/cti2.1101.
[29] LORENZ K, BECK S, KEILANI M M, et al. Course of serum autoantibodies in patients after acute angle-closure glaucoma attack[J]. Clinical & Experimental Ophthalmology, 2017, 45(3): 280–287. DOI:10.1111/ceo.12864.
[30] LORENZ K, BECK S, KEILANI M M, et al. Longitudinal analysis of serum autoantibody-reactivities in patients with primary open angle glaucoma and optic disc hemorrhage[J]. PloS One, 2016, 11(12): e0166813. DOI:10.1371/journal.pone.0166813.
[31] BELL K, WILDING C, FUNKE S, et al. Neuroprotective effects of antibodies on retinal ganglion cells in an adolescent retina organ culture[J]. Journal of Neurochemistry, 2016, 139(2): 256–269. DOI:10.1111/jnc.13765.
[32] SCHMELTER C, PERUMAL N, FUNKE S, et al. Peptides of the variable igg domain as potential biomarker candidates in primary open-angle glaucoma (poag)[J]. Human Molecular Genetics, 2017, 26(22): 4451–4464. DOI:10.1093/hmg/ddx332.
[33] JOACHIM S C, GRUS F H, KRAFT D, et al. Complex antibody profile changes in an experimental autoimmune glaucoma animal model[J]. Investigative Ophthalmology & Visual Science, 2009, 50(10): 4734–4742. DOI:10.1167/iovs.08-3144.
[34] JOACHIM S C, GRAMLICH O W, LASPAS P, et al. Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens[J]. PloS One, 2012, 7(7): e40616. DOI:10.1371/journal.pone.0040616.
[35] LINDQUIST S, CRAIG E A. The heat-shock proteins[J]. Annual Review of Genetics, 1988, 22: 631–677. DOI:10.1146/annurev.ge.22.120188.003215.
[36] JIANG S, KAMETANI M, CHEN D F. Adaptive immunity: new aspects of pathogenesis underlying neurodegeneration in glaucoma and optic neuropathy[J]. Frontiers in Immunology, 2020, 11: 65. DOI:10.3389/fimmu.2020.00065.
[37] BINDER R J. Functions of heat shock proteins in pathways of the innate and adaptive immune system[J]. The Journal of Immunology, 2014, 193(12): 5765–5771. DOI:10.4049/jimmunol.1401417.
[38] SRIVASTAVA P. Roles of heat-shock proteins in innate and adaptive immunity[J]. Nature Reviews Immunology, 2002, 2(3): 185–194. DOI:10.1038/nri749.
[39] WAX M B, TEZEL G, YANG J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated t-cell-derived fas-ligand[J]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2008, 28(46): 12085–12096. DOI:10.1523/JNEUROSCI.3200-08.2008.
[40] LUO C, YANG X, KAIN A D, et al. Glaucomatous tissue stress and the regulation of immune response through glial toll-like receptor signaling[J]. Investigative Ophthalmology & Visual Science, 2010, 51(11): 5697–5707. DOI:10.1167/iovs.10-5407.
[41] TSAI T, GROTEGUT P, REINEHR S, et al. Role of heat shock proteins in glaucoma[J]. International Journal of Molecular Sciences, 2019, 20(20): E5160. DOI:10.3390/ijms20205160.
[42] ASEA A, KRAEFT S-K, KURT-JONES E A, et al. HSP70 stimulates cytokine production through a cd14-dependant pathway, demonstrating its dual role as a chaperone and cytokine[J]. Nature Medicine, 2000, 6(4): 435–442. DOI:10.1038/74697.
[43] LAMB J R, YOUNG D B. T cell recognition of stress proteins. a link between infectious and autoimmune disease[J]. Molecular Biology & Medicine, 1990, 7(4): 311–321.
[44] CASOLA C, SCHIWEK J E, REINEHR S, et al. S100 alone has the same destructive effect on retinal ganglion cells as in combination with hsp 27 in an autoimmune glaucoma model[J]. Journal of Molecular Neuroscience: MN, 2015, 56(1): 228–236. DOI:10.1007/s12031-014-0485-2.
[45] WEST E E, KOLEV M, KEMPER C. Complement and the regulation of t cell responses[J]. Annual Review of Immunology, 2018, 36(1): 309–338. DOI:10.1146/annurev-immunol-042617-053245.
[46] LO M W, WOODRUFF T M. Complement: bridging the innate and adaptive immune systems in sterile inflammation[J]. Journal of Leukocyte Biology, 2020, 108(1): 339–351. DOI:10.1002/JLB.3MIR0220-270R.
[47] S B, S R, HB D, et al. [Complement activation after induction of ocular hypertension in an animal model][J/OL]. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft, 2015, 112(1)[2022–09–28]. https://pubmed.ncbi.nlm.nih.gov/24942221/. DOI:10.1007/s00347-014-3100-6.
[48] CHEN J, JIANG C, HUANG Q, et al. Detection of plasma complement and immune globulin in different sorts of glaucoma[J]. European Journal of Ophthalmology, 2022, 32(5): 2907–2912. DOI:10.1177/11206721221074202.
[49] HARDER J M, BRAINE C E, WILLIAMS P A, et al. Early immune responses are independent of rgc dysfunction in glaucoma with complement component c3 being protective[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(19): E3839–E3848. DOI:10.1073/pnas.1608769114.
[50] HUBENS W H G, BECKERS H J M, GORGELS T G M F, et al. Increased ratios of complement factors c3a to c3 in aqueous humor and serum mark glaucoma progression[J]. Experimental Eye Research, 2021, 204: 108460. DOI:10.1016/j.exer.2021.108460.
[51] BOSCO A, ANDERSON S R, BREEN K T, et al. Complement c3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic mouse glaucoma[J]. Molecular Therapy: The Journal of the American Society of Gene Therapy, 2018, 26(10): 2379–2396. DOI:10.1016/j.ymthe.2018.08.017.
[52] KUEHN M H, KIM C Y, OSTOJIC J, et al. Retinal synthesis and deposition of complement components induced by ocular hypertension[J]. Experimental Eye Research, 2006, 83(3): 620–628. DOI:10.1016/j.exer.2006.03.002.
[53] KUEHN M H. Immune phenomena in glaucoma and conformational disorders: why is the second eye not involved?[J]. Journal of Glaucoma, 2014, 23(8 Suppl 1): S59-61. DOI:10.1097/IJG.0000000000000115.
[54] REINEHR S, REINHARD J, GANDEJ M, et al. Simultaneous complement response via lectin pathway in retina and optic nerve in an experimental autoimmune glaucoma model[J]. Frontiers in Cellular Neuroscience, 2016, 10: 140. DOI:10.3389/fncel.2016.00140.
[55] REINEHR S, REINHARD J, GANDEJ M, et al. S100B immunization triggers nfκb and complement activation in an autoimmune glaucoma model[J]. Scientific Reports, 2018, 8(1): 9821. DOI:10.1038/s41598-018-28183-6.
[56] WILLIAMS P A, TRIBBLE J R, PEPPER K W, et al. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma[J]. Molecular Neurodegeneration, 2016, 11: 26. DOI:10.1186/s13024-016-0091-6.
[57] REINEHR S, GOMES S C, GASSEL C J, et al. Intravitreal therapy against the complement factor c5 prevents retinal degeneration in an experimental autoimmune glaucoma model[J]. Frontiers in Pharmacology, 2019, 10: 1381. DOI:10.3389/fphar.2019.01381.
[58] SUNIL S ADAV, JIN WEI, YAP TERENCE, et al. Proteomic analysis of aqueous humor from primary open angle glaucoma patients on drug treatment revealed altered complement activation cascade[J/OL]. Journal of proteome Research, 2018, 17(7)[2022–09–28]. https://pubmed.ncbi.nlm.nih.gov/29901396/. DOI:10.1021/acs.jproteome.8b00244.
[59] VERNAZZA S, TIRENDI S, BASSI A M, et al. Neuroinflammation in primary open-angle glaucoma[J]. Journal of Clinical Medicine, 2020, 9(10): E3172. DOI:10.3390/jcm9103172.
[60] TEZEL G. The role of glia, mitochondria, and the immune system in glaucoma[J]. Investigative Opthalmology & Visual Science, 2009, 50(3): 1001. DOI:10.1167/iovs.08-2717.
[61] BLOCK M L, ZECCA L, HONG J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms[J]. Nature Reviews. Neuroscience, 2007, 8(1): 57–69. DOI:10.1038/nrn2038.
[62] CHONG R S, MARTIN K R. Glial cell interactions and glaucoma[J]. Current Opinion in Ophthalmology, 2015, 26(2): 73–77. DOI:10.1097/ICU.0000000000000125.
[63] WEI X, CHO K-S, THEE E F, et al. Neuroinflammation and microglia in glaucoma: time for a paradigm shift[J]. Journal of Neuroscience Research, 2019, 97(1): 70–76. DOI:10.1002/jnr.24256.
[64] GRAMLICH O W, TEISTER J, NEUMANN M, et al. Immune response after intermittent minimally invasive intraocular pressure elevations in an experimental animal model of glaucoma[J]. Journal of Neuroinflammation, 2016, 13(1): 82. DOI:10.1186/s12974-016-0542-6.
[65] NORISTANI R, KUEHN S, STUTE G, et al. Retinal and optic nerve damage is associated with early glial responses in an experimental autoimmune glaucoma model[J]. Journal of Molecular Neuroscience: MN, 2016, 58(4): 470–482. DOI:10.1007/s12031-015-0707-2.
[66] CASOLA C, REINEHR S, KUEHN S, et al. Specific inner retinal layer cell damage in an autoimmune glaucoma model is induced by gdnf with or without hsp27[J]. Investigative Ophthalmology & Visual Science, 2016, 57(8): 3626–3639. DOI:10.1167/iovs.15-18999R2.
[67] KUEHN S, GROTEGUT P, SMIT A, et al. Important role of microglia in a novel s100b based retina degeneration model[J]. 2018, 59(9): 4500–4500. .
[68] RODRIGUES-NEVES A C, AIRES I D, VINDEIRINHO J, et al. Elevated pressure changes the purinergic system of microglial cells[J]. Frontiers in Pharmacology, 2018, 9: 16. DOI:10.3389/fphar.2018.00016.
[69] NARAYAN D S, CASSON R J, EBNETER A, et al. Immune priming and experimental glaucoma: the effect of prior systemic lipopolysaccharide challenge on tissue outcomes after optic nerve injury[J]. Clinical & Experimental Ophthalmology, 2014, 42(6): 539–554. DOI:10.1111/ceo.12289.
[70] RAMÍREZ A I, SALAZAR J J, DE HOZ R, et al. Macro- and microglial responses in the fellow eyes contralateral to glaucomatous eyes[M/OL]//Progress in Brain Research. Elsevier, 2015: 155–172[2022–09–29]. https://linkinghub.elsevier.com/retrieve/pii/S0079612315000746. DOI:10.1016/bs.pbr.2015.05.003.