接着为了多一些观察的数字,我会组织学生完成已知正方形面积求正方形边长的表格的填写。完成表格填写之后,我会引导学生观察表格中的数字特点,并提问:填写这个表格的过程是一个已知什么求什么的过程?并组织学生小组讨论,然后请小组派代表回答。通过讨论学生能够发现:边长和面积的关系实际上就是已知一个正数的平方,求这个正数的问题。然后基于此,我会进行总结,总结内容包括算术平方根的概念,被开方数的概念,以及算术平方根的写法和读法。
接着告诉学生0的算术平方根是0,并提出问题:负数有算数平方根吗?为什么?由此引发学生思考,这个问题比较简单,学生能够知道一个数的平方不可能是负数,所以负数没有算术平方根。
至此学生已经知道了算术平方根的概念。接着我会出一道例题,检验学习成果,也加强学生对算术平方根的理解与记忆。请学生求下列个数的算术平方根,分别是100、1、49/64、0.0001,并请学生说一说过程。通过求解完全平方数的算术平方根,我会引导学生观察上述计算过程和结果,并通过问题“被开方数的大小与对应的算术平方根的大小之间有什么关系呢?”引导学生去思考,然后师生共同总结:对所有正数,被开方数越大,对应的算术平方根也越大。
至此,本节课要讲的新知内容已经在师生共同配合下学习完毕。
在新知过程中,我通过让学生观察多组完全平方数及其算术平方根,引导学生共同得出算术平方根的概念及其相关知识,让学生经历了知识的形成过程,而且在观察的过程中组织学生小组讨论,说一说他们观察到的特点,锻炼了学生的观察能力、合作交流能力以及语言表达能力,体现了以学生为主体的教学理念。