通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
例1:甲、乙两个人面对面地坐着,两个人中间放着一个三位数。这个三位数的每个数字都相同,并且两人中一个人看到的这个数比另一个人看到的这个数大一半,这个数是多少?
解析:甲看到的数与乙看到的数不同,这就是说,这个三位数正看、倒看都表示数。在阿拉伯数字中,只有0、1、6、8、9这五个数字正看、倒看都表示数。
这个三位数在正看、倒看时,表示的数值不同,显然这个三位数不能是000,也不能是111和888,只可能是666或999。如果这个数是666,当其中一个人看到的是666时,另一个人看到的一定是999,999-666=333,333正好是666的一半。所以这个数是666,也可以是999。
例2:有一个长方体木块,锯去一个顶点后还有几个顶点?
解析:(1)锯去一个顶点,因为正方体原来有8个顶点,锯去一个顶点后,增加了三个顶点,所以8-1+3=10,即锯去一个顶点后还有10个顶点。
(2)如果锯开的截面通过长方体的一个顶点,则剩下的顶点是8-1+2=9(个)。
(3)如果锯开的截面通过长方体的两个顶点,则剩下的顶点是8-1+1=8(个)。
(4)如果锯开的截面通过长方体的三个顶点,则剩下的顶点是8-1=7(个)。