以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。
为了培养空间想象力,可以动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。
其次,要培养自己的画图能力。从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,
另外,答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加招教考试的考生来说,考试的每一分都是重要的,在“按步给分”的原则下,建议考生从平时的每一道题开始培养这种规范性,好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
华图教师预祝广大考生考试顺利,乘华图翅膀,圆教师梦想!