“植树问题”是新课程标准实验教材四年级下册的资料,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形状况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助资料的教学发展学生的思维,提高学生必须的思维潜力。
我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。我在十几年前仅接触过一年小学数学教学,今参加赛课,感觉个性好,反思整个教学过程,我认为我执教的这节课整体是成功的。
整节课设计基于我班学生实际状况,课前创设情境使学生明确要学习的资料,紧之后引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在那里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:透过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点资料进行难点的突破。
教学中,我创设了情境,向学生带给多次体验的机会,注重借助图形帮忙学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧之后提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
有好处的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有好处。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能到达继续建构学习的水平。所以,这节课我多次向学生带给体验的机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。
一、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的潜力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,能够说说“间隔数=棵数—1,路长=间隔数X间隔长”等等知识的扩散。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。
比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,就应思考学生的知识构建,学生的知识认知一般是在具体情景中透过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。我能够利用线段图或者实例来帮忙学生学习。让学生有能够凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。