在两种不同维度的描述中,分析其中的异同,比较差异,从而寻找突破口,这就是应用比较构造法解题的关键。
在以上例子中,两种不同维度的描述中,相同之处在于甲都做了2天,乙都做了2天,相同之处可以去掉,不同之处在于第一种维度还剩下甲做2天,第二种维度还剩下乙做1天,所以2甲=1乙,甲乙效率之间的关系为1:2。接下来我们来看几道具体的例题进行详细阐述。
例1:将一堆苹果放进一些筐里,如果每筐放12个,则多3个苹果放不下,如果每筐放14个,则又缺5个苹果,问共有多少个筐?
【解析】:从题干中可以看出对于苹果总数有了两个不同维度的描述,维度一每筐放12个多3个,维度二每筐放14个缺5个,比较两个维度就会发现相同的部分为每筐放12个,不同的地方为维度况一多了3个,维度二每筐多2个且缺5个,所以可以构造等式,设一共有x个筐,则有3=2x-5,x=4,所以共有4个筐。
例2、某公司举办年终晚宴,每桌安排7名普通员工与3名管理人员,到最后2桌时,由于管理人员已经安排完毕,便全部安排了普通员工,结果还是差2人才刚好坐满。已知该公司普通员工人数是管理人员的3倍,则该公司有管理人员( )名。
【解析】:事先按照每桌7名普通员工与3名管理人员,最后两桌坐了18个普通员工,这是第一个维度的描述,这时候我们还得构造另外一个维度,利用倍数关系普通员工=3脳管理人员来构造,相当于之前每一桌按照9个普通员工和3个管理人员一桌,刚刚可以坐满,那么这两个维度相同之处就是每一桌都有7个普通员工和3个管理人员,不同的地方在于第二个维度每一桌多出了2个普通员工,那就意味着这是把之前的18个普通员工每一桌分配了2个普通员工,那么分配了18/2=9桌,所以管理人员为9脳3=27人。故答案选择B。
有些题目维度就不是特别清晰,那就需要根据题目给的倍数等关系来构造出另外一个维度,然后进行比较,求同求异,构造等量关系就可以了。