例1(2020年内蒙古).从某物流园区开出6辆货车,这6辆货车的平均装货量为62吨,已知每辆货车载重量各不相同且均为整数,最重的装载了71吨,最轻的装载了54吨。问这6辆货车中装货第三重的卡车至少装载了多少吨?
【思路点拨】本题的正确答案为B选项。本题的总量为6脳62=372吨,分成了6组,问其中第三多的那组至少装载了多少吨。可以识别出本题为数列构造类的最值问题。第一步设第三多的卡车载重x吨。第二步,反向构造。想要第三多的尽量少,那么其他各组应尽量多,第一多的已经给定值71不需要构造,第二多的最多为70,第四多的最多为x-1,第五多的最多为x-2,最少的已经给定为54吨。第三步,加和求解。可列出方程372=71+70+x+x-1+x-2+54;解出x=60。
例2(2021国考).某地10户贫困农户共申请扶贫小额信贷25万元。已知每人申请金额都是1000元的整数倍,申请金额最高的农户申请金额不超过申请金额最低农户的2倍,且任意2户农户的申请金额都不相同。问申请金额最低的农户最少可能申请多少万元信贷?
【思路点拨】本题正确答案为B选项。总量为25万元,分成10组,问最少的那组最小值,是典型的数列构造问题。第一步,设申请金额最低的农户最少可能申请x万元信贷。第二步,根据申请金额最高的农户申请金额不超过申请金额最低农户的2倍,则最高的申请2x万元,要使最低的最低,则中间8户应尽量高,已知每人申请金额都是1000元的整数倍,构造出第二多的为2x-0.1;第三多的为2x-0.2;鈥︹�Φ诰哦嗟奈�2x-0.8。第三步,:2x+(2x-0.1)+(2x-0.2)+鈥︹��+x=25,解得x鈮�1.51。问题求最少,那么不能小于1.51则只能向上取整,最少申请1.6万元信贷。