通俗的说,用户群体维度划分就是建立群体标签。那怎么贴标签才能够划分的详略得当呢?StarYan先生(ID:MRstaryan)把用户分成了用户属性、用户行为、用户状态、用户偏好四个方面来考量。
用户属性:指用户的基础客观属性。比如性别、年龄、地域、职业等。这一维度告诉了我们他是谁。
用户行为:指用户使用行为流程,正如前面提到的下载、注册登录、点击浏览、购买下单、评价分享等。这一维度告诉了我们他在做什么。
用户状态:指用户在产品上的当前状态。比如免费用户、付费用户、活跃用户、等,按活跃度又可以细分为3天/7天/15天活跃一次活跃用户,按付费金额又可以细分为高付费/中付费/低付费用户群or年卡/季卡/月卡用户。这一维度告诉了我们他在平台上的状态。
用户偏好:指用户发生行为的关键驱动因子。以在线视频为例,用户购买影视VIP会员,有部分用户看到喜欢的内容就会开通会员,这部分就属于内容驱动,而有些对价格比较敏感,只有在折扣促销的情况下才会购买,这就属于价格驱动。内容驱动层面里又可以细分为动作/爱情/科幻等等。这一维度告诉了我们他的偏好。
有了用户分层(群)的四象限模型,可以说基本涵盖了我们要界定的用户特征。接下来我们按需提取即可。
这里另外补充一个经常被谈到的RFM模型。RFM是Rencency(最近一次消费),Frequency(消费频率)、Monetary(消费金额)。RFM模型选取了跟付费型业务最紧密的三个因素,以此来判别用户价值的高低和对应采取的策略。
它的典型适用对象比如电商类,下面会谈到具体的策略举例。
前面我们已经列出了用户维度,然后我们通过这些维度去建立用户分层(群)标准。
以在线视频用户分层标准举例,我们按照“用户状态+用户行为+用户偏好”三个指标来提取我们想要的用户。
非会员用户:至今未在平台充值会员的用户以及充值会员但是断续目前非会员状态的用户。活跃用户:近7天/15天启动过应用播放视频时长超过30S的用户。用户行为:播放了媒资标签是古装的《xxx》,追到了第11集(未追到会员可看集12集)。
上述指标定义的用户对象是在平台上活跃(7天内就有播放),观看了古装剧《xxx》,追到了最新免费剧集,会员集没有看的非会员用户。
除此以外,我们还界定了其他的用户人群ABCD等等,这里不一一展开。
需要注意的是,用户分层标准的制定就因产品而异,比如我们按照用户状态一栏活跃度划分出活跃/非活跃用户,有的高频类业务就是每3天启动就算活跃,而有的中低频消费类业务可能10天就算活跃,这时候如果把活跃度按照1天长度来切割,加上用户行为拆分,结果会变得复杂,每个分群的用户相对较少,不适宜检验策略,也解决不了业务需求。
另外,还有一类面向两类用户的产品。既有平台的生产者,又是平台的消费者。这里就会产生两个不同目标,一个围绕供给端的生产、一个围绕消费端的服务,也就形成了双向用户分层。比如微博、知乎、淘宝等。用但分类的维度依然是相同的。