在前期策划时,用户的群体画像能够引导活动的策划方向,而用户的需求决定了活动的目标;通过了解用户的兴趣,来确定活动的内容及展示方式;通过了解用户行为的一致性,来决定活动推广的时间节点。
在运营中,通过详细的事件统计,自定义埋点,进一步分析用户在活动中的行为,了解整个活动各环节的数据转化情况,再根据数据的反馈进行活动优化以及活动投入的调整。
而在活动结束时,可以通过对用户新增、活跃、留存,甚至卸载情况进行分析,评估整个活动的效果,为下一次活动提供宝贵的数据对比参考。
因此随着精细化运营变得越来越重要,个性化数据的统计、分析以及应用才是数据运营的核心能力,也将成为运营成功的关键所在。
用户都是善变的,我们不知道他们想要什么,怎么能够期望与用户天长地久。数据反应的是单一维度的结果,如何将这些数据组合起来变成用户真实的画像,融合性地去分析,真正地了解用户读懂用户,就考验运营的同学对数据的应用能力了。
首先,构成用户画像的数据可以分为属性数据、行为数据和场景数据。
属性数据反应的是用户的客观属性,即很长一段时间内不会改变的数据,如性别、年龄段、消费水平等。行为数据反应出用户近期的行为,如用户近期喜欢的应用、近期去过的场景等。场景数据反应用户实时所处的场景。通过使用LBS地理围栏技术,结合用户的地理位置来判定用户当前所处的场景。
这三大数据有机结合起来使用,可以形成数百种的用户标签,把用户的千人千面真正具象化,方便运营者做精细化的用户运营。这里推荐下我常用的个推的用户分析工具“个像”。个像可以帮助我对用户线上线下行为数据进行分析,并通过“个像”平台的数十种属性标签和数百种兴趣爱好标签,形成非常完整且精准的用户画像。
这些丰富的用户标签,可以帮我更精准地找到目标用户群。举个例子,在电影宣发时,精准的数据运营对发行策略是很有帮助的。喜欢看《冈仁波齐》的用户会具有某些共同的特点,比如电影类APP的重度用户喜欢写影评或偏好使用文青类APP等。那么我们可以通过数据分析去挖掘这批文青用户,并与之互动,通过他们去带动更大的受众市场。
这里我们要划重点的概念是用户近期的行为数据。它可以反应用户的成长周期、用户的兴趣点转移等情况,对内容运营尤为重要。比如说旅游类的APP,可以通过用户近期的行为数据,了解用户近期去过的旅游场景,避免重复推荐;了解用户近期的行为喜好,从用户感兴趣的角度推荐适合的出行内容。
数据内涵的挖掘是门技术活。对于运营来说最初级的数据分析就是数据对比,有对比才有真(shang)相(hai)。对于运营者来说需要认真分析的数据有两种:一种是APP自有数据,即用户在使用APP时产生的数据,比如APP内页面的浏览数据,消费数据等;另一种是APP外部数据,比如行业公开数据、研究数据等。
在APP自有数据的分析上,我们可以通过添加时间点、环节点、对比数据等方法,进行“花式”比较。
以营销活动为例,不仅要看最后的销售数据,还需要在营销整个环节中进行埋点,统计各个环节的转化情况。比如营销活动页打开情况,点击商品介绍页面情况,点击加入购物车情况等。在整个营销活动的各个环节都会有转化、有流失,但是到底用户在哪个环节流失最多,才是运营人真正需要去追问的关键所在。
外部数据的对比分析对于很多企业来说很难独立去做,他们往往缺少大体量的数据覆盖和行业的趋势对比,这时候有必要借助第三方数据服务商的帮助。
据了解,现在一些处于行业头部的第三方大数据服务商,通过多年积累的海量数据和强大的数据分析能力,能够很好地帮助企业进行更全面的数据分析。前两天我又种草了个推的应用数据统计分析产品“个数”。个数最吸引我的地方在于它可以提供行业对比、卸载分析等独具特色的数据分析服务,对优化运营工作非常有价值。
行业对比指数可以帮助运营者了解市场的整体发展情况,APP的行业竞争力,以及自有APP所处的发展阶段,对运营者的决策起到指引作用。
充分地解读数据,挖掘数据背后的价值,能够为运营工作提供较为客观的反馈,有效避免人为的认知偏差。
综上所述,在精细化运营的趋势下,我们越来越需要去“认清”用户本来的样子,而合理有效使用数据已经成为必须要get和升级的技能。只有用对了方法,我们才能更深入地了解用户,从而给运营工作提供新的思路。