“你看这个美容产品的落地页挺不错的,打动我了,你也要帮我做成这样的去投放!肯定效果好!”
这就好像说上一次你给土地奶奶烧了香,小孙子烧退了,这次你病了还给土地奶奶烧香,怎么反而病得更厉害了呢?
当你对大数据不够了解时,你的一切行为,都是建立在迷信的基础上,等同于去庙里烧香拜佛,但并不能起到任何实质性的作用。
那么,大数据是如何“神奇的”解决问题的呢?在你看不到的地方,许多专业人士正用你不理解的方式操作,对他们来说,大数据,只是个工具而已。
那么,不是专业数据分析师的你,该如何科学的看待大数据呢?
我们都知道数据分析离不开对投放关键指标的跟踪。比如CPM、CPS、GMV、DAU等,这些指标往往与你的生意(比如获客成本、平均客单价、客户数量等)密切有关 。
但很多人可能不知道,这些指标的跟踪也是有优先级的。具体和公司本身情况密切相关。
同样是上述这些指标,对于成熟的公司成熟的业务模式或许是可行的,因为成熟公司讲究的是执行到位,商业模式验证阶段已经完成了。企业只需要复制既有模式,按部就班,扩大规模就能顺利运营,达成商业目标。对应的,GMV这些指标是可以衡量运营绩效的,对这些关键指标的追踪也能有效的度量我们的投放运营活动。
但对于创业阶段还处于摸索时期的新项目而言,则有可能是“虚荣”指标。
为什么这么说呢?因为初创时期,大部分公司可能连自己的商业模式都还没办法完全确定,还在不停的修改自己的推广活动,还在寻找正确的产品或是目标客户,种种不确定之下,又如何去确定指标?
这也就是营销分析师常说的,不懂生意就没有办法正确的解读数据,对生意而言,重要的不是数据本身,而是,从生意角度出发,从数据中发现的有效的商业洞察。
比如你新开一个淘宝店,因为没有自然流量,所以尝试投放信息流为自己的店铺引流。那么这种情况下,每天店铺有多少客户、有多少流水,并不是你最应该关心的指标,你需要着重关心的是:这期间下单的客户里有多少在多少时间内又复购了、有多少客户开始通过搜索你的店铺名称、你的产品品牌名称进店,等等。如果这些数据不清晰,你就不知道,到底是流量帮了你,还是因为你自己的产品有竞争力吸引了客户,接下来的店铺活动、投放策略也就无法确定,后续的生意规模也很可能因此受限。
广告的目的是为了影响消费者的决策。那么消费者是如何做决策的呢?我们常听说大数据可以预测的人的行为,那是不是利用了可以预测人行为的大数据就可以影响消费者的决策,让广告更有效了呢?
很遗憾的告诉各位,大数据平台可以精准的搜集每个个体的行为数据,而非精准的预测。这也是为什么淘宝会推荐给你你刚刚买过的产品,头条总向你推送你刚刚看完的电影的缘故。
而预测,则是在行为数据的基础之上,通过人为干预或者机器学习建立的预测模型,去推测他们下一步可能进行的行动,并加以干预。
好的商人,通过观察收集数据,通过思考解读数据,然后再通过销售行为的调整来利用数据。和现在的大数据比起来,只是不那么方便、没有那么大的基数。这里我就不列举了,你此刻能想到的知名品牌都是在这方面做的好的实例。
而如今的大数据,只是省去了我们一一收集处理的过程而已。洞察这件事,至今为止,还需要人脑来进行,大数据技术只能辅助而非主导。
我们做广告,不管是做信息流还是其他,其实都是在研究人的购买决策过程,即研究用户从“看到”到“产生兴趣”、再到“产生购买欲望”、最后完成购买行为的一整个过程。当然了,这些研究都是基于“人是一个理性人”的假设,如果你做过市场调研就会发现,真正的需求往往是隐而不见的,对于营销人而言,最麻烦的就是,决策往往是因为隐性动机而引发的。而想要把隐形动机发掘出来,就必须要学会洞察人性。
我们一直会举一个有趣的例子:一个人本来看了广告想买A品牌车,后来却因为B品牌车的车模比较漂亮就买了B品牌的车。你说这人的决策有道理么?从人性角度看是有的。
人的决策路径有两种,一是中央路径,即考虑购买问题是基于充分的调研和思考,偏向“理性”,而这种临时的决策行为则指向边缘路径,即购买决策来自产品之外的某些线索。
比如决策人的择偶自我被车模激活,在这种次级自我的行为模式下,消费者的决策呈风险偏好,容易产生冲动消费——这是人性层面较为合理的解释之一。
同样的,我们在对信息流广告数据做分析时也是一样,数据给到我们的只能是迹象,我们需要从多重视角、甚至需要从最深层次的人性角度去窥探这些迹象背后的原因,思考为什么受众会做出这样的反应?他们转化或是不转化的底层逻辑是什么?如此反复,才可能找到优化的方向,比你的对手提前一步找到客户。
数据分析分为定性分析和定量分析两种方式。其中,定性分析是指:对事物的性质作出判断,即,回答“它是什么”。另外一种分析方式叫定量分析,具体是指:对事物数量上作出统计。我们通常说的点击率是多少、转化率是多少,等等,指的就是定量分析。