1.用数据做决策或者制定策略,既要知道你目前分析过的数据结果能够证明什么,也要知道数据做不了什么;个人的认知、经验是有限的,不能过于夸大也不能过于激进;这是应该规避的思维,要学会跟团队分享讨论。
2.对数据的有效利用和分析和运营者、团队都息息相关,自上而下的倡导和发起是最好的结果,高层有数据化运营的战略和意识、管理层有数据化运营的指导经验,执行层能将数据化运营的落地,那么整个体系也推行成功了。
但运营虽有意识地想要利用,可能限于团队的力量、领导的意识等无法推动,就要学会妥协,停止抱怨;推动不了的事情先从分析一个小节点开始,让团队的工作养成带有数据思维,用数据结果判断总结的习惯,以后再去专门系统的培训或者招聘数据专业人员推动整个数据标准化。
3.最后是数据分析工具和各类模型的使用。这也是数据分析技能基本要求,诸如多维度分析、交叉分析、海盗模型、用户分层模型、RFM模型、90-10-1模型、 AB测试等等,都是必须要了解的,根据产品状态,不一定都会用的到,但基本哪个是用来分析什么的,要清楚。不然讲了这么久数据运营,你拿到数据,却不知道怎么分析,分析什么,用什么分析;不就是纸上谈兵吗。
当然,数据分析具体的技巧和方法论,网上也有很多文章,适合初学者了解,更专业的核心内容建议还是阅读专业书籍,我这里主要强调培养数据思维的意识。
四、数据分析始于目的,目的要精益
产品运营的策略包含:拉新、留存、活动、推送、营销、维护等等;不可能每次分析都是针对所有的用户,这样是对资源、成本的浪费;因为你不可能通过一种方式满足所有的用户,也不可能用一种方式做到最好;用户间是有差异的,这种差异需要运营去划分出来;用精细化运营去弥补。
假如你有十万用户,你要去分析用户的消费情况,那你就要先再次强调你的目的,心里想清楚;是分析哪个层次,哪个月的用户消费情况?
减少团队成本,精确目的是将目标拆分成更细的粒度,分析三月份的用户;有当月新用户,也有一月注册用户沉淀成三月老用户;电商卖促销化妆品,根据适用用户画像,目标人群要选择年龄层、城市、工作职业等,目的划分的够精细,目标也就显而易见。精细是一种数据分析的思路,也是一种运营手段。
1.也许我们数据化运营后,不会获得立马获得一个满意的结果,但如果我们连优化改进都不去做,那么连好的结果方式是什么都不会看见;优秀的运营,不会以一个好的数据化结果沾沾自喜,而是要思考现在是我能做的最好的了,那有没有更好的可能我没想到?是终点,又是起点,这也是自我迭代,是能力的核心
2.想要工作高效运营,必然离不开数据,但很多运营其实更多被各种数据模型、理论所困,又或者工作中根本没有数据意识;工作还是应当先从优化某个节点入手,再去探索整个产品的数据体系;再而有对于整个行业产品数据的基准线意识。像很多投资人,听你讲产品,就知道这个市场能做到多大,也有很多高手,看到目前产品数据,就知道是好是坏,该走还是留。