数据源有客观数据和主观数据之分,其中用户属性属于客观数据。自然属性、商业属性、垂直属性、标签属性这些都属于客观数据,而用户行为和行为关联则属于主观数据。将用户属性和用户行为这些零散的数据输出为可用、可视的数据模型,用户画像就建立了。
我们常说的80后、90后、00后是根据年龄划分的部分人群,在这些称谓的后面一般会紧跟这些人群的一些特征。这就属于依据自然属性来对人群进行划分的分类方式。
一般来讲,自然属性指的是一个自然人的基本属性。图4列出了依据自然属性划分时常用的参数。性别属性是使用较为广泛的标签,不同性别的人群对于不同内容的喜好会有明显不同。而通过年龄、地域、学历、职业、婚姻状况、子女状况等自然属性标签,比较容易分析出一个产品用户群体的基本占比情况。不同产品所关注的点在这些自然属性里基本都有迹可循。比如目标用户是针对年轻人群体的,可以通过年龄属性看到自己产品目前的年龄层占比情况;而目标用户是妈妈群体的,可以通过婚姻状况和子女状况来判断这部分用户的占比情况是否符合预期。
商业属性也是一个比较重要的属性类别,依据商业属性划分的基本参数如图5所示。
自然属性可以帮助我们确定是什么样的人在用产品,而商业属性则能帮助我们判断有多少用户可能在产品上消费,以及他们的消费意向、消费周期、消费频次。产品良性的商业化是其长线发展中不可或缺的因素,因此单独分析产品用户的商业属性是用户画像中十分重要的组成部分。
自然属性、商业属性都是比较通用的属性,无论何种类型的产品都有分析这类用户属性的需求。而不同类型的产品还有一类专属于产品自身的垂直属性。在相对垂直的产品里,除了通用的用户属性,还有哪些值得关注的用户垂直属性?图6以旅游产品为例,列出了依据垂直属性划分的示例参数。
旅游类产品的最终目的是向用户推荐更多的旅游类内容或服务,促使用户消费,而知道用户在旅游方面有哪些属性有助于用户运营采用针对性的运营手段。其中的属性数据可以通过用户的航班信息、不同类型的行程等信息得到。
除了用户固有的客观属性,还有一种属性是运营本身赋予用户的属性——标签属性(见图7)。当一个用户开始使用产品、产生第一条数据的时候,用户运营就可以赋予其第一个标签——新人。之后随着产品用户的累积,逐渐可以分出低频用户、活跃用户、高频用户。如果是有增值服务的产品,还可以根据用户购买增值服务的情况分出VIP用户。
用户属性是在产品初期用户行为数据还不够丰富时分析用户的关键数据。需要针对不同的用户类型给出不同的运营策略。从以上4种用户属性可以看出,它们并不是单一维度的数据,而是由多种属性整合得到的用户数据集合。这个数据集合产生关于用户属性的画像,指导着产品经理和用户运营。