有的同学说:“课本有什么好看的?还不就是几个定义、定理、公式?”孰不知,就是那么几个定义、定理、公式,却以其深刻严谨的思想内涵,筑起了一幢幢数学大厦,而对数学学习感到困难者,通病之一就是对它缺乏透彻而全面的理解和掌握.所以,全面、深刻地理解和掌握定义、定理、公式是搞好复习,提高成绩的一项重要任务.要用好课本应侧重以下几个方面.
1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念.如以“角”的概念为例,课本中出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各自的定义出法,都有一个确定的取值范围.如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的性.对此理解、掌握了才不会出现概念性错误.
2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用平均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件.又如棣莫佛定理是对复数三角形式来说的.如数列中的前n项和与无穷数列各项和SS=含义是不同的,等等.
3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.
如已知1-2x=a+ax+ax+…+ax,那么①a+a+a+…+a=;②|a|+|a|+|a|+…+|a|=.如x+1x+1x+1…x+1的展开式所有项的系数之和为.
因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础.