2.根式1a1a(式中a>0)的分数指数幂形式为()
解析:选C.1a1a=a-1??a-1?12=a-32=(a-32)12=a-34.
4.计算:(π)0+2-2×(214)12=________.
解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.
4a4=|a|,a0=1条件为a≠0,故A,B,D错.
3.若xy≠0,那么等式4x2y3=-2xyy成立的条件是()
4.计算?2n+1?2??12?2n+14n?8-2(n∈N*)的结果为()
解析:选D.?2n+1?2??12?2n+14n?8-2=22n+2?2-2n-1?22?n??23?-2=2122n-6=27-2n=(12)2n-7.
=23-622-42+?2?2=23-6?2-2?
解析:选C.将a12-a-12=m平方得(a12-a-12)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+1a=m2+2?a2+1a=m2+2.
∴a-a=-?-a?2?-a?=-?-a?3=-(-a)32.
8.化简11+62+11-62=________.
解析:11+62+11-62=?3+2?2+?3-2?2=3+2+(3-2)=6.
9.化简(3+2)2010?(3-2)2011=________.
(1)0.064-13-(-18)0+1634+0.2512;
解:(1)原式=(0.43)-13-1+(24)34+(0.52)12
(2)原式=1a+1b1ab=a+bab1ab=a+b.
解:x12-y12x12+y12=?x+y?-2?xy?12x-y.
12.已知a2n=2+1,求a3n+a-3nan+a-n的值.
解:设an=t>0,则t2=2+1,a3n+a-3nan+a-n=t3+t-3t+t-1
=?t+t-1??t2-1+t-2?t+t-1=t2-1+t-2