㈡、对一次函数y=kx+b(k≠0,b≠0)的单独应用。
例3:已知点A(2,1)、B(0,3)是一次函数图象上的点,求这个一次函数的解析式。
解:设所求一次函数的解析式为y=kx+b,依题意,得
例4:如图,某一次函数图象交X轴点A的横坐标为3,交Y轴点B的纵坐标为-3,求这个一次函数的解析式。
分析:如图可知,A的坐标为(3,0)、B的坐标为(0,-3),先设解析式为y=kx+b,再把点A、B代入解析式,联立方程组,求出k、b。
解:设这个一次函数的解析式为y=kx+b,依题意,得
曾听过这样的一个比喻,说"教师就象用以识别地图的图例"。教师必须解释教学过程中不同阶段出现的标志,使学生不断地追求、探索和获得。细究起来,它包涵着深层的含义:教师必须不断丰富自己的内涵、增强自己的业务技能,才能适应教学中时刻变化的新情况,才能照亮学生成长之路中的每一个标志。教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适用范围及一般应已知的条件。在信息社会飞速发展的今天,我们教师要从以前的教师教、学生学的观念中解放出来。《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长。
孔子曰:"学而不思则罔,思而不学则殆"。多一点教学反思的细胞,就多一些教科研的智慧,教师必须有终身学习的意识,在不断反思的过程中充电,从而完善师德人格,提高专业素养,在学生的成长过程中做一幅标准的"地图实例"。几年来,本人按照上述方法进行教学和复习后,学生对求函数解析式这部分内容掌握较好,大部分学生能解决不同类型的中档或偏难的题目,从而使学生的数学成绩普遍提高。