1、探索乘法的结合律要以解决问题策略的多样化为依托。下面请老师们见教材19页探索部分,教材是通过比较2个学生的不同解题方法,发现规律的。这里要说明的一点是:我们所说的解决问题策略的多样化是指群体策略的多样化,通过比较不同学生的不同策略,来发现其中的规律,而不是要求每个学生都必须会用不同的策略解决同一个问题。
2、猜测、举例、验证必不可少。与学习加法的结合律和交换律一样,乘法的结合律和交换律也要经过猜测、举例、验证的过程。这一点,前面已经说过,在教材的呈现形式上已有所渗透。
3、运算律的字母描述形式,可以尝试放手。在教学第一单元时,由于学生是第一次接触用字母表示加法运算律,教师需要进行适当的引导,但是本学习本单元时,由于学生已经有了用字母表式规律的经验,所以教师可尝试着放手,让学生自己去摸索,去表达。
4、关注学生已有的经验和认知基础,找准迁移点。学生有了第一单元学习加法结合律和加法交换律的经验,再来学习乘法结合律和乘法交换律,应该说难度不大。因此,教师要尽量放手,发挥其主观能动性,让学生自主地获取知识。在组织教学方面,由于本单元教材的呈现形式及教法渗透方面,与上单元很相似,因此,可参照第一单元的教学流程去组织学习活动(比如说,猜想——举例——验证)
5、运算律的探索、理解、运用是本单元的教学重点,规律的记忆要在理解的基础上进行。数学课程标准对运算律的教学提出的目标是"探索和理解运算律,能应用运算律进行一些简便运算"从字面意义上看,标准对我们的要求,是学会探索方法,理解定律的`意义。当然作为基础知识与技能的教学要求,也即规律的记忆,这是必要的,但要在理解的基础上进行。
6、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。