a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
X1+X2=-b/a X1_X2=c/a注:韦达定理
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a备战 2021 高考
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+ … +(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+ …n3=n2(n+1)2/4
1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积S=c_h 斜棱柱侧面积 S=c'_h
正棱锥侧面积S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2
圆柱侧面积S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l
弧长公式l=a_r a 是圆心角的弧度数 r >0 扇形面积公式 s=1/2_l_r
锥体体积公式V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h
斜棱柱体积V=S'L 注:其中,S'是直截面面积, L 是侧棱长