1)ChatGPT在其未经大量语料训练的领域缺乏“人类常识”和引申能力,甚至会一本正经的“胡说八道”
ChatGPT在很多领域可以“创造答案”,但当用户寻求正确答案时,ChatGPT也有可能给出有误导的回答
例如让ChatGPT做一道小学应用题,尽管它可以写出一长串计算过程,但最后答案却是错误的。
2)ChatGPT无法处理复杂冗长或者特别专业的语言结构
对于来自金融、自然科学或医学等非常专业领域的问题,如果没有进行足够的语料“喂食”,ChatGPT可能无法生成适当的回答
3)ChatGPT需要非常大量的算力(芯片)来支持其训练和部署
在目前,ChatGPT在应用时仍然需要大算力的服务器支持,而这些服务器的成本是普通用户无法承受的,即便数十亿个参数的模型也需要惊人数量的计算资源才能运行和训练
如果面向真实搜索引擎的数以亿记的用户请求,如采取目前通行的免费策略,任何企业都难以承受这一成本
4)ChatGPT还没法在线的把新知识纳入其中,而出现一些新知识就去重新预训练GPT模型也是不现实的,无论是训练时间或训练成本,都是普通训练者难以接受的
如果对于新知识采取在线训练的模式,看上去可行且语料成本相对较低,但是很容易由于新数据的引入而导致对原有知识的灾难性遗忘的问题。
5)ChatGPT仍然是黑盒模型
目前还未能对ChatGPT的内在算法逻辑进行分解,因此并不能保证ChatGPT不会产生攻击甚至伤害用户的表述