1.二次函数y=ax^2,y=ax-h^2,y=ax-h^2+k,y=ax^2+bx+c各式中,a≠0的图象形状相同,只是位置不同
当h>0时,y=ax-h^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=ax-h^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=ax-h^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=ax-h^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=ax-h^2+k的图象;
因此,研究抛物线y=ax^2+bx+ca≠0的图象,通过配方,将一般式化为y=ax-h^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+ca≠0的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是-b/2a,[4ac-b^2]/4a.
3.抛物线y=ax^2+bx+ca≠0,若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
2当△=b^2-4ac>0,图象与x轴交于两点Ax₁,0和Bx₂,0,其中的x1,x2是一元二次方程ax^2+bx+c=0
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0a<0,则当x=-b/2a时,y最小大值=4ac-b^2/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
1当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
2当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=ax-h^2+ka≠0.
3当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=ax-x₁x-x₂a≠0.