要让学生会做应用题,学生必须对应用题熟悉。只有让学生有了认真读题的习惯,使题目的情节、数量关系等在解题时自始自终地保持在学生地头脑中,才可能更好的解题。
利用生活中的实际例子,提高学生的兴趣,让学生掌握解题的方法。如:在教学三步计算的应用题时,我设计了这样一道应用题:同学们,老师有件事要请你帮忙,昨天,一年级的小朋友排练节目,排着排着,有几个小朋友说肚子饿了,我随手掏出18元钱,让一个小朋友去买方便面。他回来告诉我说,店老板开始只同意给12包,我说批发部里比你的便宜得多,老板说,每包再便宜0.5元,共给我17包。现在请大家帮我算算,按店老板的说法,有没有给错。如果没给足,课后请大家帮老师将少给的要回来。
板书:18元买方便面,开始店老板给12包,后来每包便宜0.5元,共给17包。
学生在发言过程中说出自己的解题思路、方法和步骤,学生在很短的时间内就掌握了三步计算的应用题。
根据应用题的情节,直接用实物演示,使学生在观察数量关系的变化中理解具体的题意。如:男生7人,女生8人,分成3组做值日,平均每组几人?可直接请7位男生和8位女生上来,自动分成3组,每组人数相等。又如:有一座大桥长1550米,一列长100米的列车以每秒15米的速度开过这座大桥,火车过桥需要多长时间?引导学生用短铅笔比作火车,铅笔盒比作大桥,自己表演一下火车是怎样过桥的。火车到什么地方才算全部过桥?这样,学生很快明白为什么要把火车自身的车长也计算进去,从而找到解题途径。
利用图解法进行演示。在学习分数、百分数应用题时,学生只要把部分与整体的关系、具体数量与比率的对应关系表示出来,应用题解答的任务便完成了一半。如:用线段图把应用题的情节、数量关系直观地显示出来,使抽象问题具体化,复杂关系明朗化,为正确解题创造条件。