2.巧用极限的保序性、有界性与唯一性,正确快速运用极限运算法则;
3.准确快速判断分段函数特性(连续、可导与导数连续等);
7.正确运用定积分性质,处理变限积分与含参积分的技巧;
11.“按类求解”和“观察侍定”是解微分方程的两把钥匙;
12.“规律翻译”与“微量平衡分析”是解应用题的基本方法;
14.用“多元问题”“一元化”的方法研究多元函数;
15.分析“函数结构”是“抽象函数”导数的计算的关键;
16.多元极(最)值问题应抓住“三个什么”“三个步骤”;
17.“三定”(坐标系、积分序和积分限)是计算重积分的三步曲;
18.灵活运用“分块积分、对称性、几何和物理意义”是计算重积分的捷径;
20.掌握曲面的定向是正确利用Guass公式、Stokes公式的前提;
29.加减求逆乘法律,全概逆概独立性,事件化简是关键,三大概型应活用;
30.变量分布特征清,参数确定容易定,重要分布记背景,离散变量靠列表;
31.一维连续画密度,正态计算标准化,指数分布无记忆,函数分布直接求;
32.由联合分布求边缘分布的技巧,判断独立性;由联合分布求概率;
33.函数期望是关键,常用分布背特征,特征性质要牢记,二维特征定相关;
34.大数中心规范记,收敛方式有区别,切比雪夫估概率,近似计算用中心;
35.抽样分布定义明,正态抽样四式推,矩法似然原理清,无偏有效算特征;
36.区间估计靠枢轴,分位定义应明确,假设检验步骤定,两类错误会计算。