sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
tan2A = 2tanA/(1-tan^2 A)
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
sin(A/2) = √{(1--cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)} ?
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
sin(a)sin(b) = -1/2__[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2__[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2__[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2__[sin(a+b)-sin(a-b)]
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
a?sin(a)+b?cos(a) = [√(a^2+b^2)]__sin(a+c) [其中,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a^2+b^2)]__cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]^2;
1-sin(a) = [sin(a/2)-cos(a/2)]^2;;