复习导引:数列是定义在正整数集或正整数子集上的函数,函数的图象是平面直角坐标系上的点集。项an是n的函数,同数Sn也是n的函数,af(n)是复合函数,如下面的第2、3题。等差、等比中项始终是高考拟题的知识点,如下面的第1、5题。在数列问题中,从一般到特殊的思想方法,是重要的思路,如第3、5题。
1.若an是等差数列,首项a1>0,a2003+a2004>0,a2003·a2004<0,则使前n项和Sn>0成立的最大自然n是( )
C、4007 D、4008
又a1>0只有d<0,a2003、a2004中才可能有负值,∴a2004<0
a2003+a2004=2a1+4005d=a1+a1+4005d=a1+a4006>0
注:本题不同于当Sn最大时求n的值,在审题中注意区别。
2.已知两个等差数列an和bn的前n项和分别为An和Bn,且-=-,则使得-为整数的正整数n的个数是( )
A.2 B.3 C.4 D.5
注:若{an}为等差数列,那么Sn=pn2+qn,是常数项为0,关于n的二次函数。
3.已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1+b1=5,a1,b1∈N*。设cn=-(n∈N*),则数列{cn}的前10项和等于()
C.85D.100
注:-其中bn是项数,在数列中,项an是项数n的函数。
4. 各项均为正数的等比数列{an}的前n项和为Sn,若Sn=2,S3n=14,则S4n等于
S3n=S2n+a2n+1+a2n+2+…+a3n
=S2n+q2ngSn=2+2qn+2q2n=14
S4n=S3n+(a3n+1+a3n+2+…+a4n)
注:这里把Sn作为一个单位,以此表示S2n,S3n,S4n,这是一个"整体"的思想方法。
5.在等差数列{an}中,若a10=0则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N)成立.类比上述性质,相应地,在等比数列{bn}中,若b9=1则有等式____成立。
分析:用一般到特殊的思考方法。a1+a2+…+an=a1+a2+…+a19-n不好理解,不妨假定,n=18,这时上面的等式变为:a2+a3+…+a17+a18=0,a2+a18=a3+a17=…=a9+a11=2a10=0,可以看出题目条件中给出的等式是等差中项的变形,这是问题的实质。
a1+a17=a2+a16=a3+a15=…=a8+a10=2a9=0
b9=1,b1·b17=b2·b16=…=b8·b10=b92=1。
∴b1·b2……bn=b1·b2……b17-n(n<17,n∈N)
注:灵活运用等差、等比中项是数列问题中的重要内容,下面的结论有助于这种灵活应用。若p、q、m、n均为正整数,且p+q=m+n,在等差数列中有ap+aq=am+an;在等比数列中,ap·aq=am·an
6. 数列{an}中,a1=-,an+an+1=-,n∈N*则-(a1+a2+…+an)等于( )
C.- D.-
分析:若把an+an+1看成一项,那么 {an+an+1}为等比数列。
(a1+a2)+(a2+a3)+(a3+a4)+…
注:在数列求和问题中,有时可以把几项并成一项,也有时把一项分拆成几项,这是求和中"变形"的一条重要思路.
7.已知{an}是等差数列,{bn}是公比为q的等比数列,a1=b1,a2=b2≠a1,记Sn为数列{bn}的前n项和,(1)若 bk=am(m,k是大于2的正整数),求证:Sk-1=(m-1)a1;
(2)若b3=ai(i是某一正整数),求证:q是整数,且数列{bn}中每一项都是数列{an}中的项;
(3)是否存在这样的正数q,使等比数列{bn}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由;
解:(1)∵a1=b1,a2=b2≠a1→b2≠b1→q≠1
解:(2)b3=b1q2=a1q2=a1+(i-1)gd=a1+(i-1)(a2-a1)
=a1+(i-1)(b2-b1)=a1+(i-1)(a1q-a1)
bn=b1qn-1=a1+(k-1)d=a1+(k-1)(a2-a1)=a1+(k-1)ga1g(q-1)
若i=1,q=-1,q+q2+…qn-2=0或-1
分析(3)b1=a1,b2=a2,a3=b(n)为所求
n3,n=3时,2q-1=q2→q=1与已知矛盾。
注:2q-1=qn其中n,q都是未知数,因为n为正整数,所以从分析n入手。