6. 已知函数f(x)=--sin2x+sinxcosx
(Ⅱ)设α∈(0,π),f(-)=---,sinα的值。
解:(Ⅰ)化简f(x),f(x)=-cos2x+-sin2x--
两边平方整理关于sinα的二次方程:
注:在三角函数的求值、化简及研究三角函数的性质中,公式αsinα+bcosα=-sin(α+φ),tanφ=-ba,起着重要的作用。
(二)三角函数的图象与性质
复习导引:这一部分是高考的重点内容。三角函数的研究内容与方法既具有一般函数性质,又有其特殊的性质,周期性突显出来,如第3、9题,从图象角度审视,轴对称、中心对称、成为拟题的载体,如第4、5、6、11题。
1. 设函数f(x) =-cos2ωx+sinωxcosωx+α(其中ω>0,α∈R),且f(x)的图象在y轴右侧的第一个高点的横坐标为-。
(Ⅱ)如果f(x)在区间[--,-]上的最小值为-,求α的值。
解:(Ⅰ)f(x)=-cos2ωx+sinωx·cosωx+α
2. 如图,函数y=2sin(πx+φ),(x∈R),(其中0≤φ≤-)的图象与y轴交于点(0,1)。
(Ⅱ)设p是图象上的最高点,M、N是图象与x轴的交点,求-与-的夹角。
f(x)周期T=-=2,-=1,|MN|=1,|NQ|=-,|PQ|=2,tanα=-
3. 已知函数f(x)=Asin2(ωx+φ),(A>0,ω>0,0<φ<-),且y=f(x)的最大值为2,其图象相邻两对称轴的距离为2,并过点(1,2)。
(2)计算f(1)+f(2)+…+f(2008)。
解:(Ⅰ)f(x)=Asin2(ωx+φ)=---cos(2ωx+2φ)
∴f(1)+f(2)+…+f(2008)=502×4=2008
4. 设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=-。
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切。