逻辑推理在力学中可以说俯拾皆是。严密的逻辑推理,是正确运用物理规律解决问题的必由之路。试举一例:做曲线运动的物体一定受合外力,其逻辑推理过程如下:曲线运动的速度方向沿轨迹的切线方向,而曲线切线方向每点是不同的,因此曲线运动的速度方向一定是不断变化的。由于的矢量,所以曲线运动必为变速运动,必然有加速度,由牛顿第二定律可知其必受合外力。当然,实际问题中似乎并非如此繁琐,然而细细地想来又的如此,只是思维过程较为迅速罢了。再举一例:合外力对物体做功不为零,则物体的动量一定发生变化,而物体的动量变化,合外力对物体不一定做功。此命题依然可用逻辑推理说明其正确性。根据动能定理,当合外力做功时,则物体的动能必然发生变化,因此速率发生变化,则动量必然变化。反之支量发生变化,动能不一定变(动量是矢量,动能是标量),则合外力不一定做功。不难看出,清晰地认识概念,牢固地掌握规律,者严密正确的逻辑推理得以完成的重要前提和充足的条件补充。同学们若多留意.多用心,定会受益非浅。
解决力学问题,无非是解决物体的运动问题。既然如此,描述运动状态和改变运动状态之间就是力学手段应用的切入点。如描述运动状态的量有速度.动量和动能,而改变状态的原因又分别是力.冲量和功,构成以上关系的则分别是牛顿第二定律.动量定理和动能定理,而这些恰恰是质点动力学的主干。如此说来,我们的复习过程绝不是做题可以全部代替的,必须深入力学的各个领域,切实体会各部分的个性和共性,把握各量之.各规律间的内在联系,才能对整个"力学体系"有宏观地了解,更好.更有效.更迅速地解决各种力学问题。
比起轰轰烈烈的力学问题来,热学体系要显得平静和细腻。在此着重谈谈气体定律的应用问题。
众所周知,对一种事物,若要研究之,必先描述之,这在学习物理过程中,大家已深有体会。气体问题当然也不例外,状态参量的确定,便成了首当其冲的问题,温度.体积和压强诸参量中压强的确定显得尤为重要,这并非是压强有超乎一般参量的地位,而是由于压强计算的复杂性和它的变化多端,在复习中应引起足够的重视。
解决气体问题除了要熟练应用气体定律之外,方法的掌握也是至关重要的。常用的方法有极限法及假设法,下面简单谈谈这两种方法的运用。
例1.把装有气体的上端封闭玻璃管竖直插入水银槽内,管内水银面与槽内水银面的高度差为h。当玻璃管缓慢竖直向下插入一些,问h怎样变化?
例2.在一根一端封闭的均匀直玻璃管中,有一段5厘米长的水银柱,把质量为m的空气封闭在玻璃管中。当玻璃管水平放置时,管内空气柱的长度为14厘米,现缓慢地摇动玻璃管,让一定量的空气进入封闭在管内的空气柱中,最后,当玻璃管处在竖直位置且开中向下时,空气柱的长度为16厘米。设在整个过程中温度保持不变,大气压强为75厘米汞柱,求后来进入空气柱的空气质量。
分析:此类问题若采用玻-马定律且涉及质量问题,一定会有质量与体积的关系。而质量比等于体积比,则应在"同种.同质.同温"的三同条件下才是成立的。此时,可应用"假设法",使一部分气体发生实际上并未发生的状态变化,从而找出上述关系,这就是在此题中应用假设法的初衷。哪下述过程:假设管中未进入气体且玻璃管开口向下,由玻-马定律知,气柱高度应为:P0l=Pl,l=75×14/70=15(cm),再假设此时气体进入玻璃管,则将占有1厘米,则有m‘/m=l’/l=1/15,所以有m‘=1/15m。此题亦可做其它假设,大家不妨一试。
假设法作为解决问题的方法,在解决气体问题时的确是行之有效的,应用的关键是要有丰富的想象力,且能紧紧把握住"状态"."过程"及"研究对象",我们知道气体三定律及一定质量理想气体状态方程是针对"一定质量"气体而言,若解决变质量问题时,研究对象的确定亦是不能忽视的。
最后再谈"力热综合"问题。此类问题的主干仍然应以力学规律为主,其间可以有气体压力出现,从方法上看,也依然是以力学方法作为主要方法,如隔离法.整体法等等。此间最感困惑之处应是气体压力是否进入力学方程,这完全由研究对象的选择而定。以88年的高考热学题为例:一加油圆筒形气缸静置于地面上气缸筒的质量为M,活塞连同手柄的质量为m,气缸内部的横截面积为S,大气压强为P,平衡时气缸的窖为V,现用手握着活塞手柄缓慢地向上提,设气缸足够长,在整个上提过程中气体温度保持不变,并不计气缸内气体的重力及活塞与气缸壁的摩擦,求将气缸刚提离地面时活塞上升的距离(图略)
分析:此题涉及三部分对象,气缸.活塞及气体,若以气体为研究对象,其应用规律显然是玻-马定律,两态一过程可以建立一个方程暂且不论,对活塞及气缸来说,两次平衡状态从整体到局部共可以建立六个平衡方程。这六个方程怎样建立及哪几个方程是有效方程,是解此题的关键点。第一平衡态:对气缸N+P0S=Mg①。对活塞P0S+mg=P1S②,对整体
N=(M+m)g③可见①③两式联立消去N后可得2式,因此,只建立第2式即可。第二平衡态:对气缸P0S=P2S+Mg④,对活塞P2S+F=mg+P0S,⑤对整体F=(M+m)g⑥,这三式中任取二式与第②式及玻-马定律P1V=P2(V+xS),组成4个方程组。即可解得
由以上讨论可见,力热综合问题与力学问题的最大区别,就在于受力分析中可以出现气体压力,而联系力热规律必须依靠公式F=PS,这是力热综合的衔接点。
总之,力热综合问题并不神秘,也并非凌驾于力学和热学上,而是与一般综合问题一样,是二者有机地.巧妙地组合,但并不影响力学热学规律的使用,问题的关键仍然是基本概念.基本规律和基本方法的掌握。