确定你已知的变量。如果你知道三角形的一个夹角和一条边长,如果这个角是底边和已知侧边的夹角,或是已知三条边长,你就能求出三角形的高。我们将三角形的三边称之为a、b和c,三角为A、B和C。
如果你已知三角形的三边边长,可以使用海伦公式来求出三角形的高。
如果你已知两条边长和一个角,可以使用面积公式A = 1/2ab(sin C)来求解。
如果你已知三条边长也可以使用海伦公式。海伦公式分为两部分。首先,你必须求解出变量 s,它等于三角形周长的一半。你可以使用这个公式:s = (a+b+c)/2 求出。
例如,三角形三边长为 a = 4、b = 3和c = 5,故而s = (4+3+5)/2,也就是s = (12)/2。求出s = 6。
然后使用海伦公式的第二部分。面积 = sqr(s(s-a)(s-b)(s-c)。 再将面积代入含有高的面积公式:1/2bh (或 1/2ah 、1/2ch)。
计算求出高。在本例中,就是1/2(3)h = sqr(6(6-4)(6-3)(6-5)。化简得3/2h = sqr(6(2)(3)(1),也就是3/2h = sqr(36)。使用计算器计算开方,得到3/2h = 6。因此,使用边长b作为底边,得出,三角形的高等于4。
如果已知一条边长和一个夹角,使用两边和一角的面积公式来求解。用三角形面积公式1/2bh来代替上述公式中的面积。公式就变成了1/2bh = 1/2ab(sin C),化简得到h = a(sin C),这样可以消除一条未知边长的变量。
根据已知变量来求解等式。例如,已知a = 3、C = 40度,代入公式得"h = 3(sin 40)。使用计算器来计算等式,得到高h约等于1.928。