2、如何得到一个力的分力?试求一水平向右、大小为10N的力的分力。(作图)
3、力的合成与力的分解是什么关系?
拖拉机拉着耙,对耙的拉力是斜向上的,这个力产生了两个效果;一方面使耙克服泥土的阻力前进;另一方面同时把耙往上提,使它不会插得太深。也就是一个力产生了两个效果(画出物体的受力示意图,如下)。
如果这两个效果是由某两个力分别产生的,使耙克服泥土的阻力前进的效果是由一个水平向前的力F1产生;把耙往上提,使它不会插得太深的效果是由一个竖直向上的力F2产生的。那F1、F2与拉力F是怎样的一种关系?
思考分析:将一木块放到光滑的斜面上,试分析重力的作用效果并将重力进行分解。
1、一个力,如果它的两个分力的作用线已经给定,分解结果可能有 种(注意:两分力作用线与该力作用线不重合)
解析:作出力分解时的平行四边形,可知分解结果只能有1种。
2、一个力,若它的一个分力作用线已经给定(与该力不共线),另外一个分力的大小任意给定,分解结果可能有 种
3、有一个力大小为100N,将它分解为两个力,已知它的一个分力方向与该力方向的夹角为30°。那么,它的另一个分力的最小值是 N,与该力的夹角为
既有大小,又有方向,并遵循平行四边形定则的物理量叫做矢量.只有大小而没有方向,遵循代数求和法则的物理量叫做标量.
力、速度是矢量;长度、质量、时间、温度、能量、电流强度等物理量是标量.
矢量和标量的根本区别就在于它们分别遵循两种不同的求和运算法则.
1、下列说法正确的是( )
A. 已知一个力的大小和方向及它两个分力的方向,则这两个分力有解。
B. 已知一个力的大小和方向及它一个分力的大小和方向,则另一个分力有无数解。
C. 已知一个力的大小和方向及它一个分力的方向,则它另一个分力有无数解,但有最小值。
D. 已知一个力的大小和方向及它一个分力的方向和另一个分力的大小,则两个分力有解。
3、在光滑的斜面上自由下滑的物体所受的力为( )
A.重力和斜面的支持力 B.重力、下滑力和斜面的支持力
C.重力和物体对斜面的压力 D.重力、下滑力、斜面的支持力和紧压斜面的力
4、将80N的力分解,其中一个分力F1与它的夹角为30 度,
1、当另一个分力F2最小时求F1的大小。2、当F2=50N时求F1的大小。
5、一个半径为r,重为G的圆球被长为r的细线AC悬挂在墙上,
1.力F分解为F1、F2两个分力,则下列说法正确的是
2.细绳MO与NO所能承受的拉力相同,长度MO>NO,则在不断增加重物G的重力过程中(绳OC不会断)
3.如图1—6—8所示,一个半径为r,重为G的光滑均匀球,用长度为r的细绳挂在竖直光滑的墙壁上,则绳子的拉力F和球对墙壁压力FN的大小分别是
4.三个共点力,F1=5 N,F2=10 N,F3=15 N,θ=60°,它们的合力的x轴分量Fx为 N,y轴分量Fy为 N,合力的大小为 N,合力方向跟x轴的正方向夹角为 .
5.三角形轻支架ABC的边长AB=20 cm,BC=15 cm.在A点通过细绳悬挂一个重30 N的物体,则AB杆受拉力大小为 N,AC杆受压力大小为 N.
6.一表面光滑,所受重力可不计的尖劈(AC=BC,∠ACB=θ)插在缝间,并施以竖直向下的力F,则劈对左、右接触点的压力大小分别是__________,__________.
9.将质量为m的小球,用长为L的轻绳吊起来,并靠在光滑的半径为r的半球体上,绳的悬点A到球面的最小距离为d.(1)求小球对绳子的拉力和对半球体的压力.(2)若L变短,问小球对绳子的拉力和对半球体的压力如何变化?
解析:(1)将小球受到的重力按作用效果分解,做出平行四边形如图所示,由三角形ABO与三角形BF2G相似,对应边成比例得[来源: ]
由上式可得小球对绳子的拉力为 ,小球对半球体的压力为 .
(2)当L变短时,F2= 减小,F1= 不变,所以,小球对绳子的拉力减小,小球对半球体的压力不变.
(2)若L变短,小球对绳子的拉力减小,小球对半球体的压力不变.