在教学中,多数情况下,我经常采用提出启发性的问题来激发学生思考,但问题提出后没给学生留下足够的思维空间,甚至不留思维空间,往往习惯于追问学生,急于让其说出结果。显然,学生对题目只是片面的理解,不能引发学生的深思,当然也就不能给学生留下深刻的印象,因此造成很多学生对于做过的题一点印象也没有。对于学过的数学定理或公式不能深刻理解,当然更谈不上灵活运用了。因此在教学中我发现:给学生创设一个合适的情境,通过教师的引,让学生自己去发现,去总结,去归纳,效果更好。
例如:在学习四边形时,我设置了这样一个情境:由一个特殊四边形怎样逐步过渡到另一个特殊四边形?看谁想得既全面又符合逻辑。于是大家都积极参与,认真看书总结。教师把一个一个的题目写成小纸条,以抽签的形式搞一次竞赛,教师列出题目分别是"已知四边形是平行四边形,怎样一步过渡到菱形?""已知四边形是菱形,怎样过渡到正方形?""已知四边形是平行四边形,怎样过渡到矩形?"于是同学们勇于抽签抢答。教师一条一条小结在黑板上,作为结论性的东西让同学记住:"对角线互相垂直的平行四边形是菱形"、"对角线相等的菱形是正方形"、"有一个角是直角的菱形是正方形"、"对角线相等的平行四边形是矩形"。于是教师给同学们总结出了一个结论:在判定四边形性质时,应在已知图形的基础上,看是否符合"加边"这个已知条件。比如平行四边形开拓转化成矩形,就不符合。此时就应看其是否符合"加角"这个已知条件,例如"对角线相等的平行四边形是矩形",这样学生学习特殊的四边形的性质就不难了。显然,这种上课方法的取得的教学效果远比机械的师讲生背效果好得多。