推导的过程根据已知的公理、定义、定理,经过演算和逻辑推理而得出新的结论的过程。在教学中我们应将数学知识形成的基本过程和基本方法贯穿始终,从学生的实际出发,结合教学内容,设计有利于学生参与的教学环节,引导学生积极参与概念的建立过程,定理、公式的发现和证明过程。例如,在对"三垂线定理"进行教学设计时,教师可以通过具体问题的解决创设如下问题情境:取出一个正方体模型,上底面上有一点M,在上底面画一条线与直线AM垂直,请问怎么画?学生用老师提供的模型分组讨论,思索着如何画出与AM垂直的直线。学生可能会有各种各样的画法,于是就可以问学生:"你画的直线一定AM垂直吗?所画的直线AM与上底面有何位置关系?"由此引出课题。然后再引导学生分析画法的实质,并用几何语言概括出这个实质,即"平面内的一条直线,若和这个平面的一条斜线在这个平面内的射线垂直,则它也和这条斜线垂直"。这样,学生就能自己从问题出发得出三垂线定理,亲身经历学习活动的全过程,并学到新知识。
设问法主要是围绕现有的事物,以书面或口头形式提出各种问题,通过提问,发现现有事物存在的问题和不足的地方,从而找到要革新的方面,发明出新的事物来。在学生百思而不得其解,产生不解则不快的情感需求时,教师稍加点拨引导,让学生在顿悟中产生"原来如此"的快感,继而又生出解决新难题的兴趣与决心,这样就为良好学习品质的形成打下了坚实的基础。例如:在讲授"二项式定理"时,教师可设计这样一个问题:"今天星期一,那么今天后的第290天是星期几?"这必将激起学生的浓厚兴趣。然后告诉学生们只要掌握了二项式定理,这个问题马上就能解决。这样同学们学习二项式定理的愿望就更强烈。又如在讲"概率"时,可问学生:"你知道你买一张体育彩票中一等奖的可能性有多大吗?"这样的问题情境,不但能够提高学生对数学的兴趣,激发学生的学习动机,以及学好数学的愿望,而且能够培养学生凭借自己已有的生活经验和已有的知识分析、解决实际问题的能力。
矛盾的事物引人思辨,引入矛盾,就如引水击石,激波荡澜,能刺激学生在积极思维状态中去吸收新的信息和知识。在讲授"曲线的参数方程"一节时,设计了物理学中物体的平抛运动,要求学生求其运动曲线的方程。当学生用求曲线普通方程的方法去思考时,竟找不到列方程的几何条件。老师点拨:如果不能直接寻找关系式,能否间接去找呢?一石激起千层浪,暂时陷入矛盾中的学生经过独立思考,并展开了热烈讨论,结果发现:借助时间参数,利用物理力学原理可以写出物体运动依赖时间变化的方程组,从而间接地得到了运动曲线方程。如此,学生对"参数方程"的学习感受很深。
比喻就是"打比方",是根据事物之间的相似点,把某一事物比做另一事物,把抽象的事物变得具体,把深奥的道理变得浅显的修辞手段。要用形象化语言去解释抽象的数学概念,一般地说,对人的感官富有刺激性的语言,最能引起学生的兴趣,古希腊哲学家亚里士多德说过:聪明人总是与另外的聪明人意见相符;傻瓜常常既不赞同聪明人,又不赞同笨蛋。与此相似,直线总能与直线相吻合;而曲线既不彼此吻合,更不会同直线相一致。这样的比喻形象地说明了智者与庸者之间的区别。法国著名启蒙思想家卢梭也说过:异性友情的发展,就像双曲线,无限接近但永不触及。这也形象地说明了异性友情的正确导向,即相互真诚,相互欣赏,相互理解,而没有暧昧纠缠的情结。