1.理解同分母分式与异分母分式加减法的运算法则,体会类比思想.
2.能运用同分母分式和异分母分式加减运算法则进行运算,体会化归思想.
一、创设情景,明确目标
同学们还记得分数是如何进行加减法运算的吗?(找同学叙述)
现在我们看下面两个问题:
问题1:甲工程队完成一项工程需要n天,乙工程队要比甲队多用3天,才能完成这项工程,两队共同工作一天完成这项工程的几分之几?
问题2:2011年、2012年、2013年某地的森林面积(单位:公顷)分别是1S、2S、3S,2013年与2012年相比,森林面积增长率提高了多少?
请按两个问题的要求列出代数式,请观察两个代数式有何特征,如何对这类代数式进行运算,这就是我们今天所要探究的内容.
1.让学生观察课本P140页思考,并让学生叙述分数加减法法则.
2.类似分数加减法运算法则,推广可得分式的加减法法则,你能叙述吗?
展示点评:同分母的分式相加减,分母________,把分子相________.
异分母的分式相加减,先________,变为________分式,再加减.