1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算,体验简便运算的优越性。
2、使学生在理解运算顺序和简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。
3、使学生在学习过程中,体会到数学知识的内在联系,积累数学学习的经验。
1、谈话:中国结是我们中华民族特有的传统工艺制作,元旦时我们班将用它来装扮教室。
2、出示场景图:小的中国结每个用4分米彩绳,大的中国结每个用6分米彩绳。两种中国结各做18个,一共用彩绳多少米?
4、小结:整数、小数四则混合运算的运算顺序都是先算乘除法,再算加减法。有括号的先算括号里面的。还可以使用运算律使计算更简便。
[设计意图:"温故而知新",在具体的情境中再现旧知,为新课的教学打下了稳固的知识基础,埋下了情感、思维体验的伏笔。]
1、出示例1的场景图,学生自主列出综合算式。
板书: 2/5×18+3/5×18 (2/5+3/5)×18
3、指出:在一道有关分数的算式中,含有两种或两种以上的运算,称为分数四则混合运算。
[设计意图:将计算与解决问题有机结合起来,能使学生体会到计算是解决实际问题的需要,从而增强学习计算的内在需求。]
4、独立思考,尝试计算
(1)提问:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
使学生明确:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。
5、交流算法,理解顺序
让学生结合具体问题情境说说运算顺序。说清先算什么,再算什么。
6、小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。
[设计意图:利用学生已有的知识经验唤醒学生的数学思考,用自主学习的方法体会分数四则混合运算的顺序,体验数学知识的内在联系,新知识纳入知识结构的过程也就顺理成章。]
1、讨论:这两个算式,如果让你选择,你喜欢计算哪一个?为什么?
使学生明确第二个算式因为括号内的和是整数,所以计算比较简便。
2、观察:这两种算式有什么联系?
得出:两种方法从算式来看,其实是乘法分配律的运用。
板书:2/5×18+3/5×18=(2/5+3/5)×18
3、引导:两个不同的算式,求的都是"一共用彩绳多少米"。从中,你得到了什么启发?
4、小结:整数的运算律在分数中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
[设计意图:整数的运算律迁移到分数中来使用,让学生在计算中自主探索,充分观察,对比体验,通过自己思考,用已有的知识结构去同化、顺应新的知识,达到有意义的学习的目的。发展了学生的抽象概括能力和初步的演绎推理能力。]
1、练一练第1题
反馈时:可以让学生说说自己的算法,第1题的除法和乘法你是怎么处理的?
小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。但整数四则混合运算通常是一次计算出一个得数,而分数四则混合运算的乘除法连在一起时可以同时运算。
使学生重温检查的方法,养成习惯:(1)数字、符号有没有抄错;(2)每一步的计算是否正确;(3)书写格式是否规范。
[设计意图:计算后,引导学生自觉对计算过程进行检查,分析错误的原因,养成认真计算、自觉检查的良好习惯,充分发挥每一道题的作用,培养学生认真负责的学习态度。]
2、练一练第2题
交流时,说说应用了什么运算律或运算性质,为什么要这样算。
提问:分数四则混合运算在使用运算律时,有什么特别之处?
小结:整数四则混合运算在使用运算律时,常常是使用运算律凑成整十或整百、整千数再计算,但分数四则混合运算在使用运算律时,通常是凑成整数,或者观察是否有利于约分。计算步数较多的题时,要随时注意使运算简便。
[设计意图:把整数的简便运算与分数的简便运算进行对比,使学生体会,使用的运算律是相同的,但分析的方法稍有区别。养成认真分析数据的习惯,提高合理灵活计算的能力。]
3、练习十五1、2题
五、全课总结
计算分数四则混合运算时,你觉得你对同学们可以提出什么样的友情提醒?