这句话一直是Java程序设计师们的精神指标,也是Java之所以能够受到程序设计师们喜爱的原因之一,最大的功臣就是JVM的技术。大多数编译器产生的目标代码只能运行在一 种CPU上(如Intel的x86系列),即使那些能支持多种CPU的编译器也不能同时产生适合多 种CPU的目标代码。如果你需要在三种CPU( 如x86、SPARC 和MIPS)上运行同一程序, 就必须编译三次。
但JAVA编译器就不同了。JAVA编译器产生的目标代码(J-Code) 是针对一种并不 存在的CPU--JAVA虚拟机(JAVA Virtual Machine),而不是某一实际的CPU。JAVA虚拟机能掩盖不同CPU之间的差别,使J-Code能运行于任何具有JAVA虚拟机的机器上。
虚拟机的概念并不AVA 所 特 有 的:加州大学几年前就提出了PASCAL虚拟机的概念;广泛用于Unix服务器的Perl脚本也是产生与机器无关的中间代码用于执行。但针对Internet应用而设计的JAVA虚拟机的特别之处在于它能产生安全的不受病毒威胁的目标代码。正是由于Internet对安全特性的特别要求才使得JVM能够迅速被人们接受。 当今主 流的操作系统如OS/2、MacOS、Windows95/NT都已经或很快提供对J-Code的支持。
作为一种虚拟的CPU,JAVA 虚拟机对于源代码(Source Code) 来说是独立的。我们不仅可以用JAVA语言来生成J-Code,也可以用Ada95来生成。事实上,已经有了针对若干种源代码的J-Code 编译器,包括Basic、Lisp 和Forth。源代码一经转换成J-Code以后,JAVA虚拟机就能够执行而不区分它是由哪种源代码生成的。这样做的结果就是CPU可移植性。 将源程序编译为J-Code的好处在于可运行于各种机器上,而缺点是它不如本机代码运行的速度快。
同体系结构无关的特性使得Java应用程序可以在配备了Java解释器和运行环境的任何计算机系统上运行,这成为Java应用软件便于移植的良好基础。但仅仅如此还不够。如果基本数据类型设计依赖于具体实现,也将为程序的移植带来很大不便。例如在Windows3.1中整数(Integer)为16bits,在Windows95中整数为32bits,在DECAlpha中整数为64bits,在Intel486中为32bits。通过定义独立于平台的基本数据类型及其运算,Java数据得以在任何硬件平台上保持一致。Java语言的基本数据类型及其表示方式如下:byte8-bit二进制补码short16-bit二进制补码int32-bit二进制补码long64-bit二进制补码float32-bitIEEE754浮点数double32-bitIEEE754浮点数char16-bitUnicode字符在任何Java解释器中,数据类型都是依据以上标准具体实现的。因为几乎目前使用的所有CPU都能支持以上数据类型、8~64位整数格式的补码运算和单/双精度浮点运算。Java编译器本身就是用Java语言编写的。Java运算系统的编制依据POSIX方便移植的限制,用ANSIC语言写成。Java语言规范中也没有任何"同具体实现相关"的内容。