(1)缺步解答.如果遇到一个很困难的.问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分.
(2)跳步答题.解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一"卡壳处".由于考试时间的限制,"卡壳处"的攻克如果来不及了,就可以把前面的写下来,再写出"证实某步之后,继续有……"一直做到底.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面.若题目有两问,第一问想不出来,可把第一问作"已知","先做第二问",这也是跳步解答.
(3)退步解答."以退求进"是一个重要的解题策略.如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题.为了不产生"以偏概全"的误解,应开门见山写上"本题分几种情况".这样,还会为寻找正确的、一般性的解法提供有意义的启发.
(4)辅助解答.一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤.实质性的步骤未找到之前,找辅助性的步骤是明智之举.如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等.答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率.试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷.